@article{RSMUP_2000__104__1_0, author = {Liang, Fei-Tsen}, title = {Level sets of Gauss curvature in surfaces of constant mean curvature}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, volume = {104}, year = {2000}, pages = {1-26}, mrnumber = {1809346}, zbl = {1097.53036}, language = {en}, url = {http://dml.mathdoc.fr/item/RSMUP_2000__104__1_0} }
Liang, Fei-Tsen. Level sets of Gauss curvature in surfaces of constant mean curvature. Rendiconti del Seminario Matematico della Università di Padova, Tome 104 (2000) pp. 1-26. http://gdmltest.u-ga.fr/item/RSMUP_2000__104__1_0/
[1] E. LIEB, On extention of the Brunn-Minkowski and Prekoja-Leindler theorems, J. Funct. Anal., 11 (1976), pp. 366-389. | Zbl 0334.26009
-[2] A. FRIEDMAN, Convexity of solutions of semilinear elliptic equations, Duke. Math. J., 52 (1985), pp. 31-456. | MR 792181 | Zbl 0599.35065
-[3] Convexity of capillary surfaces in outer space, Invent. Math., 67 (1982), pp. 253-259. | MR 665156 | Zbl 0496.76005
- ,[4] Existence criteria for capillary free surfaces without gravity, Indiana Univ. Math. J., 32 (1982), pp. 439-460. | MR 697648 | Zbl 0487.76012
,[5] Comparison Principles in Capillarity, Calculus of Variations, Lecture Notes in Mathematics, vol. 1357, Springer-Verlag, 1988. | MR 976235 | Zbl 0692.35006
,[6] Lectures on Differential Geometry in the Large, Lecture Notes in Mathematics, vol. 1000, Springer-Verlag, 1983. | MR 707850 | Zbl 0526.53002
,[7] Superhamonicity of curvatures for surfaces of constant mean curvature, Pacific J. of Math., 152, no. 2 (1992), pp. 291-318. | MR 1141797 | Zbl 0767.53040
,[8] CHUN-CHI LIN, Negatively Curved Sets in Surfaces of Constant Mean Curvature in R3, Arch. Rat. Mech. Anal., 141, no. 2 (1998), pp. 105-116. | MR 1615516 | Zbl 0941.53011
-[9] Convex solutions to nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J., 32 (1983), pp. 603-614. | MR 703287 | Zbl 0481.35024
,[10] Convex solutions to nonlinear elliptic equations having constant rank Hessians, Arch. Rat. Mech. Anal., 32 (1987), pp. 19-32. | Zbl 0624.35031
- ,[11] Counterexample to a conjecture of H. Hopf, Pacific J. Math., 121 (1986), pp. 193-243. | MR 815044 | Zbl 0586.53003
,