@article{RSMUP_2000__104__173_0, author = {Mora, Maria Giovanna and Morini, Massimiliano}, title = {Functionals depending on curvatures with constraints}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, volume = {104}, year = {2000}, pages = {173-199}, mrnumber = {1809356}, zbl = {1017.49019}, language = {en}, url = {http://dml.mathdoc.fr/item/RSMUP_2000__104__173_0} }
Mora, Maria Giovanna; Morini, Massimiliano. Functionals depending on curvatures with constraints. Rendiconti del Seminario Matematico della Università di Padova, Tome 104 (2000) pp. 173-199. http://gdmltest.u-ga.fr/item/RSMUP_2000__104__173_0/
[1] N. Fusco, Semicontinuity Problems in the Calculus of Variations, Arch. Rational Mech. Anal., 86 (1984), pp. 125-145. | MR 751305 | Zbl 0565.49010
-[2] A. DOUGLIS - L. NIRENBERG, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary value conditions, Comm. Pure Appl. Math., 12 (1959), pp. 623-727. | MR 125307 | Zbl 0093.10401
-[3] Semicontinuity and Relaxation Properties of a Curvature Depending Functional in 2D, Ann. Scuola Norm. Sup. Pisa, XX (1993), pp. 247-297. | Numdam | MR 1233638 | Zbl 0797.49013
- - ,[4] Differential Geometry of Curves and Surfaces, Prentice-Hall, Englewood Cliffs, New Jersey (1976). | MR 394451 | Zbl 0326.53001
,[5] Total Mean Curvature and Submanifolds of Finite Type, Series in Pure Mathematics-Volume 1, World Scientific Publishing Co Pte Ltd., Singapore (1984). | MR 749575 | Zbl 0537.53049
,[6] An Introduction to Γ-convergence, Birkhäuser, Boston (1993). | Zbl 0816.49001
:[7] Variational Models in Image Segmentation, Birkhäuser, Boston (1995). | MR 1321598
- ,[8] The 2.1-D Sketch, International Conference on Computer Vision. Computer Society Press, IEEE (1990).
- ,[9] Filtering, Segmentation and Depth, Springer-Verlag, Berlin (1993). | MR 1226232 | Zbl 0801.68171
- - ,[10] A Comprehensive Introduction to Differential Geometry, Publish or Perish, Berkeley (1979). | Zbl 0439.53001
,[11] Note on embedded surfaces, An. Stiint. Univ. «Al. I. Cusa» Iasi Sect. I, a Mat., vol. II (1965), pp. 443-446. | MR 202066 | Zbl 0171.20001
,[12] Mean Curvature of Immersed Manifolds, topics in Differential Geometry, edited by H. Rund and W. F. Forbes, Academic Press, London (1976), pp. 149-156. | MR 413017 | Zbl 0339.53005
,