@article{RSMUP_2000__103__261_0, author = {Dambrosio, Walter}, title = {Global bifurcation from the Fu\v cik spectrum}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, volume = {104}, year = {2000}, pages = {261-281}, mrnumber = {1789543}, zbl = {0971.34024}, language = {en}, url = {http://dml.mathdoc.fr/item/RSMUP_2000__103__261_0} }
Dambrosio, Walter. Global bifurcation from the Fučik spectrum. Rendiconti del Seminario Matematico della Università di Padova, Tome 104 (2000) pp. 261-281. http://gdmltest.u-ga.fr/item/RSMUP_2000__103__261_0/
[1] Global and local behaviour of bifurcating multidimensional continua of solutions for multiparameter nonlinear eigenvalue problems, Arch. Rat. Mech. Anal., 76 (1981), pp. 339-354. | MR 628173 | Zbl 0479.58005
- ,[2] Quasilinear equations with a multiple bifurcation, Diff. Int. Eq., 10 (1997), pp. 37-50. | MR 1424797 | Zbl 0879.35021
- - ,[3] A primer of Nonlinear Analysis, Cambridge Studies in Adv. Math. Cambr. Univ. Press, 1993. | MR 1225101 | Zbl 0818.47059
- ,[4] Nonlinear problems of elasticity, Applied Math. Sciences, 107, Springer-Verlag, 1995. | MR 1323857 | Zbl 0820.73002
,[5] Bifurcation from eigencurves of the p-laplacian, Diff. Int. Eq., 8, n. 2 (1995), pp. 415-428. | MR 1296133 | Zbl 0819.35108
- ,[6] Global preservation of nodal structure in coupled systems of nonlinear Sturm-Liouville boundary value problems, Proc. A.M.S., 107 (1989), pp. 633-644. | MR 975633 | Zbl 0683.34010
,[7] Multiplicity results for some two-point super-linear asymmetric boundary value problem, Nonlinear Analysis, TMA, 38, n. 7 (1999), pp. 869-896. | MR 1711758 | Zbl 0952.34012
- ,[8] On the Dirichlet problem for weakly nonlinear elliptic partial differential equations, Proc. Royal Soc. Edinburgh, 76A (1977), pp. 283-300. | MR 499709 | Zbl 0351.35037
,[9] Multiple solutions of weakly-coupled systems with p-Laplacian operators, Results Math., 36, n. 1-2 (1999), pp. 34-54. | MR 1706481 | Zbl 0942.34015
,[10] MANÁSEVICH, A homotopic deformation along p of a Leray-Schauder degree result and existence for (|u' |p-2 u' )' + + f(t, u) = 0, u(0) = u(T) = 0, p > 1, J. Differential Eq., 80 (1989), pp. 1-13. | MR 1003248 | Zbl 0708.34019
-[11] On the global bifurcation for a class of degenerate equations, Annali Mat. Pura Appl. (IV), 159 (1991), pp. 1-16. | MR 1145086 | Zbl 0814.34018
,[12] Solvability and bifurcation of nonlinear equations, Pitman Res. Notes in Math. Series, 264. Longman Scient. & Tech., 1992. | MR 1175397 | Zbl 0753.34002
P.,[13] Bifurcations of second order problems with jumping nonlinearities, Bull. Austr. Math. Society, 37 (1988), pp. 179-187. | MR 930787 | Zbl 0631.34054
- ,[14] Multiple solutions of semilinear elliptic problems in a ball, J. Differential Eq., 57 (1985), pp. 112-137. | MR 788425 | Zbl 0519.35031
,[15] I. MASSABÒ - J. PEJSACHOWICZ, Global several-parameter bifurcation and continuation theorems: a unified approach via complementing maps, Math. Ann., 263 (1983), pp. 61-73. | MR 697331 | Zbl 0519.58024
-[16] Solvability of Nonlinear equations and Boundary value problems, Math. and its Applications, 4. D. Reidel Publishing Company, 1980. | Zbl 0453.47035
,[17] The existence of solutions to a class of semilinear differential equations, Diff. Int. Eq., 8, n. 2 (1995), pp. 429-452. | MR 1296134 | Zbl 0818.34013
- ,[18] Connected sets in multiparameter bifurcation, Nonlinear Analysis, TMA, 30, n. 6 (1997), 3763-3774 (Proc. 2nd World Congress of Nonlinear Analysis). | MR 1602938 | Zbl 0901.58009
,[19] Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), pp. 487-513. | MR 301587 | Zbl 0212.16504
,[20] Some aspects of nonlinear eigenvalues problems, Rocky Mountain J. Math., 3 (1973), pp. 161-202. | MR 320850 | Zbl 0255.47069
,[21] A vector parameter global bifurcation result, Nonlinear Analysis, TMA, 25, n. 14 (1995), pp. 1425-1435. | MR 1355731 | Zbl 0901.47041
,