@article{RSMUP_1999__101__83_0, author = {S\'anchez, Cristi\'an U. and Cal\'\i , Ana L. and Moreschi, Jos\'e L.}, title = {Homogeneous totally real submanifolds of complex projective space}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, volume = {102}, year = {1999}, pages = {83-94}, mrnumber = {1705281}, zbl = {0932.53035}, language = {en}, url = {http://dml.mathdoc.fr/item/RSMUP_1999__101__83_0} }
Sánchez, Cristián U.; Calí, Ana L.; Moreschi, José L. Homogeneous totally real submanifolds of complex projective space. Rendiconti del Seminario Matematico della Università di Padova, Tome 102 (1999) pp. 83-94. http://gdmltest.u-ga.fr/item/RSMUP_1999__101__83_0/
[1] Einstein Manifolds, Springer-Verlag, Berlin, Heidelberg (1987). Ergebnisse der Mathematic und ihrer Grenzgebiete 3F. Bd. 10. | MR 867684 | Zbl 0613.53001
,[2] On totally real submanifolds, Transactions of the Amer. Math. Soc., 193 (1974), pp. 257-266. | MR 346708 | Zbl 0286.53019
- ,[3] Holomorphicity of Minimal Submanifolds in Complex Space Forms, Math. Ann., 277 (1987), pp. 353-360. | MR 891580 | Zbl 0631.53046
- ,[4] S. SCHIRRMACHER, Submanifolds in Euclidean space with simple geodesics, Math. Ann., 260 (1982), pp. 57-62. | MR 664365 | Zbl 0474.53004
-[5] Differential geometry, Lie groups and symmetric spaces, Academic Press, New York (1978). | MR 514561 | Zbl 0451.53038
,[6] Isotropic submanifolds with parallel second fundamental forms in Symmetric Spaces, Osaka J. Math., 17 (1980), pp. 95-110. | MR 558321 | Zbl 0427.53022
,[7] Isotropic submanifolds with parallel second fundamental forms in Pm(c), Osaka J. Math., 18 (1981), pp. 427-464. | MR 628843 | Zbl 0471.53036
,[8] A geometric characterization of the orbits of s-representations, J. reine angew. Math., 420 (1991), pp. 195-202. | MR 1124572 | Zbl 0727.53012
- ,[9] A characterization of extrinsik k-symmetric submanifolds of RN, Revista de la Union Matemática Argentina, 38 (1992), pp. 1-15. | MR 1276012 | Zbl 0819.53005
,[10] The tightness of certain almost complex submanifolds, Proc. Amer. Math. Soc., 110 (1990), pp. 807-811. | MR 1025282 | Zbl 0716.53035
,[11] On some properties which characterize Symmetric and general R-Spaces, to appear in Differential Geometry and its applications. | MR 1480541 | Zbl 0898.53042
- - - ,[12] The action of a real semisimple group on a complex flag manifold I: Orbit structure and holomorphic arc components, Bull. Amer. Math. Soc., 75 (1968), pp. 1121-1237. | MR 251246 | Zbl 0183.50901
,