New convergence criteria for the Newton-Kantorovich method and some applications to nonlinear integral equations
De Pascale, Espedito ; Zabrejko, Pjotr P.
Rendiconti del Seminario Matematico della Università di Padova, Tome 99 (1998), p. 211-230 / Harvested from Numdam
Publié le : 1998-01-01
@article{RSMUP_1998__100__211_0,
     author = {De Pascale, Espedito and Zabrejko, Pjotr},
     title = {New convergence criteria for the Newton-Kantorovich method and some applications to nonlinear integral equations},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     volume = {99},
     year = {1998},
     pages = {211-230},
     mrnumber = {1675279},
     zbl = {0923.65029},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RSMUP_1998__100__211_0}
}
De Pascale, Espedito; Zabrejko, Pjotr P. New convergence criteria for the Newton-Kantorovich method and some applications to nonlinear integral equations. Rendiconti del Seminario Matematico della Università di Padova, Tome 99 (1998) pp. 211-230. http://gdmltest.u-ga.fr/item/RSMUP_1998__100__211_0/

[1] J. Appell - E. De Pascale - Ju V. Lysenko - P.P. Zabrejko, New results on Newton-Kantorovich approximations with applications to nonlinear integral equations, Numer. Funct. Anal. and Optimiz., 18 (1997), pp. 1-17. | MR 1442016 | Zbl 0881.65049

[2] J. Appell - E. De Pascale - P.P. Zabrejko, On the application of the Newton-Kantorovich method to nonlinear integral equations of Uryson type, Numer. Funct. Anal. Optim., 12 (1991), pp. 271-283. | MR 1142999 | Zbl 0746.45002

[3] J. Appell - P. P. ZABREJKO, Nonlinear Superposition Operators, Cambridge University Press, Cambridge (1990). | MR 1066204 | Zbl 0701.47041

[4] N.T. Demidovich - P.P. Zabrejko - Ju. V. Lysenko, Some remarks on the Newton-Kantorovich method for nonlinear equations with Hölder continuous linearizations (in Russian), Izv. Akad. Nauk Beloruss., 3 (1993), pp. 22-26. | Zbl 0925.65104

[5] E. Hille - R. S. PHILLIPS, Functional Analysis and Semigroups, Amer. Math. Soc. Coll. Publ., New York (1957). | MR 89373 | Zbl 0078.10004

[6] L.V. Kantorovich - G.P. Akilov, Functional Analysis, Pergamon Press, Oxford (1982). | MR 664597 | Zbl 0484.46003

[7] M.A. Krasnosel'Skij - Ya B. Rutickii, Convex Functions and OrLicz Spaces, Noordhoff (1981).

[8] M.A. Krasnosel'Skij - G.M. Vajnikko - P.P. Zabrejko - Ja B. Rutitskij- V. Ja. Stetsenko, Approximate ,Sotutions of Operator Equations, Noordhoff, Groningen (1972).

[9] M.A. Krasnoselq'Skij - P.P. Zabrejko - Je I. Pustyl'Nik - P. Je. Sobolevskij, Integral Operators in Spaces of Summable Functions, Noordhoff, Leyden (1976).

[10] Ju. V. Lysenko, Conditions for the convergence of the Netwon-Kantorovich method for nonlinear equations with Hölder linearizations nonlinearities (Russian), Dokl. Akad. Nauk BSSR, 38, No. 30 (1994), pp. 20-24. | MR 1306370 | Zbl 0819.65095

[11] I.P. Mysovskikh, On the convergence of L. V. Kantorovich's method of solution of functionaL equations and its applications (in Russian), Dokl. Akad. Nauk. SSSR, 70, No. 4 (1950), pp. 565-568. | MR 34522

[12] A.C. Zaanen, Linear Analysis, North-Holland Publ., Amsterdam (1953). | Zbl 0053.25601

[13] P.P. Zabrejko, Nonlinear Integral Operators (in Russian), Izd. Voron. Gos. Univ., Voronezh (1966).

[14] P.P. Zabrejko - N.L. Majorova, On the solvability of nonlinear Uryson integral equation (in Russian), Kach. Pribl. Methody Issled. Oper. Uravn., 3 (1978), pp. 61-73. | MR 559322 | Zbl 0425.45005

[15] P.P. Zabrejko - D.F. Nguyen, The majorant method in the theory of Newton-Kantorovich approximations and the Pták estimates, Numer. Funct. Anal. Optim., 9 (1987), pp. 671-684. | MR 895991 | Zbl 0627.65069

[16] P.P. Zabrejko - D. Nguyen, The Pták estimates in the Newton-Kantorovich method for operator equations (in Russian), Vestnik Akad. Nauk BSSR 3 (1989), pp. 8-13. | Zbl 0687.65056

[17] P.P. Zabrejko - D.F. Nguyen, Estimating the rate of convergence of the Newton-Kantorovich method for equations with Holder linearizations (in Russian), Izv. Akad. Nauk BSSR, 2 (1991), pp. 8-14. | Zbl 0721.65031