Homoclinic-type solutions for an almost periodic semilinear elliptic equation on R n
Alessio, Francesca ; Calanchi, Marta
Rendiconti del Seminario Matematico della Università di Padova, Tome 98 (1997), p. 89-111 / Harvested from Numdam
Publié le : 1997-01-01
@article{RSMUP_1997__97__89_0,
     author = {Alessio, Francesca and Calanchi, Marta},
     title = {Homoclinic-type solutions for an almost periodic semilinear elliptic equation on $R^n$},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     volume = {98},
     year = {1997},
     pages = {89-111},
     mrnumber = {1476166},
     zbl = {0884.35034},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RSMUP_1997__97__89_0}
}
Alessio, Francesca; Calanchi, Marta. Homoclinic-type solutions for an almost periodic semilinear elliptic equation on $R^n$. Rendiconti del Seminario Matematico della Università di Padova, Tome 98 (1997) pp. 89-111. http://gdmltest.u-ga.fr/item/RSMUP_1997__97__89_0/

[1] A. Ambrosetti - M.L. Bertotti, Homoclinics for second order conservative systems, in Partial Differential Equation and Related Subjects, edited by M. MIRANDA, Pitman Research Notes in Math. Ser. 1992. | MR 1190931 | Zbl 0804.34046

[2] A. Ambrosetti - V. Coti Zelati, Multiple homoclinic orbits for a class of conservative systems, Preprint SNS, 1992.

[3] C. Corduneanu, Almost Periodic Function, Interscience Publishers (1968). | MR 481915

[4] V. Coti Zelati - I. Ekeland - E. Séré, A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann., 288 (1990), pp. 133-160. | MR 1070929 | Zbl 0731.34050

[5] V. Coti Zelati - P.H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991), pp. 693-727. | MR 1119200 | Zbl 0744.34045

[6] V. Coti Zelati - P.H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on Rn, Comm. Pure Appl. Math., 45 (1992), pp. 1217-1269. | MR 1181725 | Zbl 0785.35029

[7] D. Gilbarg - N. S. TRUDINGER, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 2nd edition (1983). | MR 737190 | Zbl 0562.35001

[8] P.L. Lions, The concentration compactness principle in the calculus of variations. The locally compact case, part 2, Analyse Nonlin., 1 (1984), pp. 223-283. | Numdam | MR 778974

[9] P. Montecchiari, Multiplicity results for a class of semilinear elliptic equations on Rn, Preprint SISSA, 1994.

[10] P. Montecchiari, Existence and multiplicity of homoclinic solutions for a class of asymptotically periodic second order Hamiltonian systems, Ann. Mat. Pura Appl. (IV), 168 (1995), pp. 317-354. | MR 1378249 | Zbl 0849.34035

[11] P. Montecchiari - M. Nolasco, Multibump solutions for pertubations of periodic second order Hamiltonian systems, Preprint SISSA, 1994. | MR 1408876 | Zbl 0863.34050

[12] E.S. Noussair - C.A. Swanson, Positive solutions of semilinear elliptic problems in unbounded domains, J. Diff. Eq., 57 (1985), pp. 349-372. | MR 790281 | Zbl 0583.35039

[13] M.H. Protter - H. F. WEINBERGER, Maximum Principles in Differential Equations, Prentice-Hall (1967). | MR 219861 | Zbl 0153.13602

[14] P.H. Rabinowitz, A note on a semilinear elliptic equation on Rn, in A Tribute in Honour of Giovanni Prodi, Quaderni Scuola Normale Superiore, Pisa (1991). | MR 1205391 | Zbl 0836.35045

[15] E. Séré, Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Zeit., 209 (1991), pp. 27-42. | MR 1143210 | Zbl 0725.58017

[16] E. Séré, Looking for the Bernoulli shift, Ann. IHP Anal. Nonlinéaire, 10 (1993), pp. 561-590 | Numdam | MR 1249107 | Zbl 0803.58013

[17] E. Serra - M. Tarallo - S. Terracini, On the existence of homoclinic solutions for almost periodic second order systems, Ann. IHP Anal. Nonlinéaire, 13 (1996), pp. 783-812. | Numdam | MR 1420498 | Zbl 0873.58032

[18] S. Zaidman, Almost-Periodic Functions in Abstract Spaces, Pitman Advanced Publishing Program (1985). | MR 790316 | Zbl 0648.42006