@article{RSMUP_1997__97__7_0, author = {Smith, Howard and Wiegold, James}, title = {Groups which are isomorphic to their nonabelian subgroups}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, volume = {98}, year = {1997}, pages = {7-16}, mrnumber = {1476158}, zbl = {0887.20012}, language = {en}, url = {http://dml.mathdoc.fr/item/RSMUP_1997__97__7_0} }
Smith, Howard; Wiegold, James. Groups which are isomorphic to their nonabelian subgroups. Rendiconti del Seminario Matematico della Università di Padova, Tome 98 (1997) pp. 7-16. http://gdmltest.u-ga.fr/item/RSMUP_1997__97__7_0/
[1] Groups with restricted non-normal subgroups, Math. Z., 176 (1981), pp. 199-221. | MR 607962 | Zbl 0474.20014
- ,[2] On finitely generated soluble groups with no large wreath product sections, Proc. London Math. Soc. (3), 49 (1984), pp. 155-169. | MR 743376 | Zbl 0537.20013
,[3] H. SMITH - J. WIEGOLD, A problem on normal subgroups, J. Pure and Applied Algebra, 88 (1993), pp. 169-171. | MR 1233321 | Zbl 0797.20027
-[4] Non-abelian groups in which every subgroup is abelian, Trans. Amer. Math. Soc., 4 (1903), pp. 398-404. | JFM 34.0173.01 | MR 1500650
- ,[5] M. B. NATHANSON (Editor), Number Theory, Carbondale 1979, Lecture Notes in Math., 751, Springer (1979). | MR 564918 | Zbl 0405.00004
[6] OL'SHANSKII, Geometry of Defining Relations in Groups, Nauka, Moscow (1989). | MR 1024791 | Zbl 0676.20014
[7] Polycyclic Groups, Cambridge Tracts in Mathematics, 82, C.U.P. (1983). | MR 713786 | Zbl 0516.20001
,[8] On homomorphic images of locally graded groups, Rend. Sem. Mat. Univ. Padova, 91 (1994), pp. 53-60. | Numdam | MR 1289630 | Zbl 0817.20035
,[9] Algebraic Number Theory, second edition, Chap-man and Hall (1987). | MR 896691 | Zbl 0663.12001
- ,