A remark on semiglobal existence for ¯
Scalari, Alberto
Rendiconti del Seminario Matematico della Università di Padova, Tome 98 (1997), p. 29-33 / Harvested from Numdam
Publié le : 1997-01-01
@article{RSMUP_1997__97__29_0,
     author = {Scalari, Alberto},
     title = {A remark on semiglobal existence for $\bar{\partial }$},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     volume = {98},
     year = {1997},
     pages = {29-33},
     zbl = {0896.32009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RSMUP_1997__97__29_0}
}
Scalari, Alberto. A remark on semiglobal existence for $\bar{\partial }$. Rendiconti del Seminario Matematico della Università di Padova, Tome 98 (1997) pp. 29-33. http://gdmltest.u-ga.fr/item/RSMUP_1997__97__29_0/

[1] A. Andreotti - H. GRAUERT, Théorèmes de finitude pour la cohomologie des éspaces complexes, Bull. Soc. Math. France, 90 (1962), pp. 193-259. | Numdam | MR 150342 | Zbl 0106.05501

[2] A. Andreotti - C. D. HILL, E. E. Levi convexity and the Hans Lewy problem, Part II: Vanishing theorems, Ann. Sc. Norm. Sup. Pisa (1972), pp. 747-806. | Numdam | MR 477150 | Zbl 0283.32013

[3] H. Grauert, Kantenkohomologie, Compositio Math., 44 (1981), pp. 79-101. | Numdam | MR 662457 | Zbl 0512.32011

[4] G.M. Henkin, H. Lewy's equation and analysis on pseudoconvex manifolds (Russian), I. Uspehi Mat. Nauk., 32 (3) (1977), pp. 57-118. | MR 454067 | Zbl 0382.35038

[5] G.M. Henkin - J. Leiterer, Andreotti-Grauert theory by integral formulas, Birkhauser Progress in Math., 74 (1988). | MR 986248 | Zbl 0654.32002

[6] L. Hörmander, An Introduction to Complex Analysis in Several Complex Variables, Van Nostrand, Princeton N.J. (1966). | MR 203075 | Zbl 0138.06203

[7] L. Hörmander, L2 estimates and existence theorems for the ∂ operator, Acta Math., 113 (1965), pp. 89-152. | Zbl 0158.11002

[8] H. Komatsu, A local version of Bochner's tube theorem, J. Fac. Sci. Univ. Tokyo, Sect. 1A, 19 (1972). | MR 316749 | Zbl 0239.32012

[9] G. Zampieri, The Andreotti-Grauert vanishing theorem for dihedrons of Cn, J. Fac. Sci. Univ. Tokyo, to appear. | Zbl 0859.32009