A pseudocompact space with Kelley's property has a strictly positive measure
Kalamidas, N.
Rendiconti del Seminario Matematico della Università di Padova, Tome 98 (1997), p. 17-21 / Harvested from Numdam
Publié le : 1997-01-01
@article{RSMUP_1997__97__17_0,
     author = {Kalamidas, N.},
     title = {A pseudocompact space with Kelley's property has a strictly positive measure},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     volume = {98},
     year = {1997},
     pages = {17-21},
     mrnumber = {1476159},
     zbl = {0889.54011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RSMUP_1997__97__17_0}
}
Kalamidas, N. A pseudocompact space with Kelley's property has a strictly positive measure. Rendiconti del Seminario Matematico della Università di Padova, Tome 98 (1997) pp. 17-21. http://gdmltest.u-ga.fr/item/RSMUP_1997__97__17_0/

[1] K. Alster - R. POL, On function spaces of compact subspaces of ∑-products of the real line, Fund. Math., 107 (1980), pp. 135-143. | Zbl 0432.54013

[2] A.V. Arkhangelskii, Function spaces in the topology of pointwise convergence and compact sets, Uspekhi Math. Nauk, 39:5 (1984), pp. 11-50. | MR 764007 | Zbl 0568.54016

[3] W.W. Comfort - S. Negrepontis, Chain Conditions in Topology, Cambridge Tracts in Math., Vol. 79, Cambridge University Press (1982). | MR 665100 | Zbl 0488.54002

[4] L. Gillman - M. JERISON, Rings of Continuous Functions, Springer-Verlag, New York, Heidelberg, Berlin (1976). | MR 407579 | Zbl 0327.46040

[5] D.H. Fremlin, An alternative form of a problem of A. Bellow, Note of October, 10 (1989).

[6] H.P. Rosenthal, On injective Banach spaces and the spaces L∞ (μ) for finite measures μ, Acta Math., 124 (1970), pp. 205-248. | Zbl 0207.42803

[7] D.B. Shakhmatov, A pseudocompact Tychonoff space, all countable subsets of which are closed and C*-embedded, Topology and its Appl., 22 (1986), pp. 139-144. | MR 836321 | Zbl 0586.54020

[8] V.V. Tkačuk, Calibers of spaces of functions and the metrization problem for compact subsets of Cp(X), Vestnik Univ. Matematika, 43, No. 3 (1988), pp. 21-24. | MR 966860 | Zbl 0653.54010

[9] A. Ionesku Tulcea, On pointwise convergence, Compactness and Equicontinuity II, Advances in Math., 12 (1974), pp. 171-177. | MR 405103 | Zbl 0301.46032