The Picard boundary value problem for a third order stochastic difference equation
Ferrante, Marco
Rendiconti del Seminario Matematico della Università di Padova, Tome 96 (1996), p. 85-98 / Harvested from Numdam
Publié le : 1996-01-01
@article{RSMUP_1996__96__85_0,
     author = {Ferrante, Marco},
     title = {The Picard boundary value problem for a third order stochastic difference equation},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     volume = {96},
     year = {1996},
     pages = {85-98},
     mrnumber = {1438289},
     zbl = {0874.60056},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RSMUP_1996__96__85_0}
}
Ferrante, Marco. The Picard boundary value problem for a third order stochastic difference equation. Rendiconti del Seminario Matematico della Università di Padova, Tome 96 (1996) pp. 85-98. http://gdmltest.u-ga.fr/item/RSMUP_1996__96__85_0/

[1] A. Alabert - D. Nualart, Some remarks on the conditional independence and the Markov property, in Stochastic Analysis and Related Topics, Progress in Probability, 31, Birkhäuser (1992). | MR 1203381 | Zbl 0789.60058

[2] M.C. Baccin - M. Ferrante, On a stochastic delay difference equation with boundary conditions and its Markov property, to appear on Stochastic Process. Appl. | MR 1362323 | Zbl 0846.60063

[3] C. Donati-Martin, Propriété de Markov des équations stationnaires discrétes quasi-linéaires, Stochastic. Process. Appl., 48 (1993), pp. 61-84. | MR 1237168 | Zbl 0788.60080

[4] M. Ferrante, Triangular stochastic differential equations with boundary conditions, Rend. Sem. Mat. Univ. Padova, 90 (1993), pp. 159-188. | Numdam | MR 1257138 | Zbl 0795.60051

[5] M. Ferrante - D. Nualart, On the Markov property of a stochastic difference equation, Stochastic. Process. Appl., 52 (1994), pp. 239-250. | MR 1290697 | Zbl 0811.60050

[6] J. Lions, Quelques méthods de résolution des problèmes aux limites non linaires, Dunod (1969).

[7] D. Nualart - E. PARDOUX, Boundary value problems for stochastic differential equations, Ann. of Prob., 19, no. 3 (1991), pp. 1118-1144. | MR 1112409 | Zbl 0736.60052

[8] D. Nualart - E. Pardoux, Second order stochastic differential equations with Dirichlet boundary conditions, Stochastic. Process. Appl., 39 (1991), pp. 1-24. | MR 1135081 | Zbl 0745.60061

[9] A.C. Peterson, Existence and uniqueness theorems for nonlinear difference equations, J. Math. Anal. Appl., 125 (1987), pp. 185-191. | MR 891358 | Zbl 0625.39002