History-dependent scalar conservation laws
Marcati, Pierangelo ; Rubino, Bruno
Rendiconti del Seminario Matematico della Università di Padova, Tome 96 (1996), p. 195-204 / Harvested from Numdam
Publié le : 1996-01-01
@article{RSMUP_1996__96__195_0,
     author = {Marcati, Pierangelo and Rubino, Bruno},
     title = {History-dependent scalar conservation laws},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     volume = {96},
     year = {1996},
     pages = {195-204},
     mrnumber = {1438298},
     zbl = {0874.35072},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RSMUP_1996__96__195_0}
}
Marcati, Pierangelo; Rubino, Bruno. History-dependent scalar conservation laws. Rendiconti del Seminario Matematico della Università di Padova, Tome 96 (1996) pp. 195-204. http://gdmltest.u-ga.fr/item/RSMUP_1996__96__195_0/

[1] J.M. Ball, A version of the fundamental theorem for Young measures, in D. SERRE, editor, Proc. Conf. on Partial Differential Equation and Continuum Models of Phase Transitions, Springer-Verlag (1988). | MR 1036070 | Zbl 0991.49500

[2] G.-Q. Chen - T.-P. LIU, Zero relaxation and dissipation Limits for hyperbolic conservation laws, Comm. Pure Appl. Math., 46 (1993), pp. 755-781. | MR 1213992 | Zbl 0797.35113

[3] G.-Q. Chen - Y. Lu, The study on application way of the compensated compactness theory, Clin. Sci. Bull., 34 (1989), pp. 15-19. | MR 1000841 | Zbl 0685.35067

[4] C.M. Dafermos, Development of singularities in the motion of materials with fading memory, Arch. Rational Mech. Anal., 91 (1986), pp. 193-205. | MR 806001 | Zbl 0595.73026

[5] C.M. Dafermos, Estimates for conservation laws with little viscosity, SIAM J. Math. Anal., 18 (1987), pp. 409-421. | MR 876280 | Zbl 0655.35055

[6] C.M. Dafermos, Solutions in L ∞for a conservation law with memory, Analyse Mathématique et Applications, (1988), pp. 117-128. | Zbl 0686.35075

[7] C.M. Dafermos - J.A. Nohel, Energy methods for nonlinear hyperbolic Volterra integrodifferential equations, Comm. Partial Differential Equations, 4 (1979), pp. 219-278. | MR 522712 | Zbl 0464.45009

[8] C.M. Dafermos - J.A. Nohel, A nonlinear hyperbolic Volterra equation in viscoelasticity, Amer. J. Math., suppl. dedicated to P. Hartman, (1982), pp. 87-116. | MR 648457 | Zbl 0588.35016

[9] W.J. Hrusa - J.A. Nohel, The Cauchy problem in one-dimensional nonlinear viscoelasticity, J. Differential Equations, 59 (1985), pp. 388-412. | MR 807854 | Zbl 0535.35057

[10] P. Lin, Young measure and application of compensated compactness to one-dimensional nonlinear elacstodynamics, Trans. Amer. Math. Soc., 329 (1992), pp. 377-413. | MR 1049615 | Zbl 0761.35061

[11] T.-P. Liu, Nonlinear waves for viscoelasticity with fading memory, J. Differential Equations, 76 (1988), pp. 26-46. | MR 964611 | Zbl 0662.35004

[12] R.C. Maccamy, A model for one-dimensional nonlinear viscoelasticity, Quart. Appl. Math., 35 (1977), pp. 21-33. | MR 478939 | Zbl 0355.73041

[13] P. Marcati, Relaxation and singular convergence for quasitinear hyperbolic systems, in L. BOCCARDO, M. A. HERRERO and A. TESEI, editors, First Italian-Spain Meeting on Nonlinear Analisis, pp. 140-148, Rome (1989), Quaderno IAC-CNR.

[14] P. Marcati - A. Milani, The one-dimensional Darcy's law as the limit of a compressible Euler flow, J. Differential Equations, 13 (1990), pp. 129-147. | MR 1042662 | Zbl 0715.35065

[15] P. Marcati - A. Milani - P. Secchi, Singular convergence of weak solutions for a quasilinear nonhomogeneous hyperbolic system, Manuscripta Math., 60 (1988), pp. 49-69. | MR 920759 | Zbl 0617.35078

[16] J.A. Nohel - R.C. Rogers, Development of singularities in nonlinear viscoelasticity, in Amorphous Polymers and Non-Newtonian Fluids, vol. 6, pp. 139-152, Springer Lecture Notes in Mathematics (1987), IMA Vol. Math. Appl. | MR 902188

[17] M. Renardy - W.J. Hrusa - J.A. Nohel, Mathematical Problems in Viscoelasticity, John Wiley and Longmann Press (1987). | MR 919738 | Zbl 0719.73013

[18] M.E. Schonbek, Convergence of solutions to nonlinear dispersive equations, Comm. Partial Differential Equations, 7 (1982), pp. 959-1000. | MR 668586 | Zbl 0496.35058