Regular time-optimal syntheses for smooth planar systems
Piccoli, Benedetto
Rendiconti del Seminario Matematico della Università di Padova, Tome 96 (1996), p. 59-79 / Harvested from Numdam
@article{RSMUP_1996__95__59_0,
     author = {Piccoli, Benedetto},
     title = {Regular time-optimal syntheses for smooth planar systems},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     volume = {96},
     year = {1996},
     pages = {59-79},
     mrnumber = {1405355},
     zbl = {0912.49018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RSMUP_1996__95__59_0}
}
Piccoli, Benedetto. Regular time-optimal syntheses for smooth planar systems. Rendiconti del Seminario Matematico della Università di Padova, Tome 96 (1996) pp. 59-79. http://gdmltest.u-ga.fr/item/RSMUP_1996__95__59_0/

[1] V.G. Boltyanskii, Sufficient conditions for optimality and the justification of the dynamic programming principle, SIAM J. Control and Opt., 4 (1966), pp. 326-361. | MR 197205 | Zbl 0143.32004

[2] P. Brunovsky, Every normal linear system has a regular time-optimal synethesis, Math. Slovaca, 28 (1978), pp. 81-100. | MR 527776 | Zbl 0369.49013

[3] P. Brunovsky, Existence of regular synthesis for general problems, J. Diff. Eq., 38 (1980), pp. 317-343. | MR 605053 | Zbl 0417.49030

[4] P. Hartman, Ordinary Differential Equations, Wiley, New York (1964). | MR 171038 | Zbl 0125.32102

[5] H. Hermes - J.P. Lasalle, Functional Analysis and Time Optimal Control, Academic Press (1969). | MR 420366 | Zbl 0203.47504

[6] E.B. Lee - L. MARKUS, Foundations of Optimal Control Theory, Wiley, New York (1967). | MR 220537 | Zbl 0159.13201

[7] M.M. Peixoto, Generic properties of ordinary differential equations, in Studies in Ordinary Differentials Equations, J. Hale ed., MAA Studies in Mathematics, No. 14, Washington (1977), pp. 52-92. | MR 474410 | Zbl 0375.34026

[8] M.M. Peixoto, On the Classification of Flows on 2-Manifolds, Proceedings of a Symposium Helded at the University of Bahia, Brasil, 1971, M. M. Peixoto ed., Academic Press, New York (1973), pp. 389-420. | MR 334289 | Zbl 0299.58011

[9] H.J. Sussmann, Envelopes, conjugate points, and optimal bang-bang extremals, algebraic and geometric methods in nonlinear control theory, M. Fliess and M. Hazewinkel eds., D. Reidel Publishing Company (1986), pp. 325-346. | MR 862332 | Zbl 0619.49017

[10] H.J. Sussmann, The structure of time-optimal trajectories for single-input systems in the plane: the C∞ nonsingular case, SIAM J. Control and Opt., 25 (1987), pp. 433-465. | Zbl 0664.93034

[11] H.J. Sussmann, The structure of time-optimal trajectories for single-input systems in the plane: the general real analytic case, SIAM J. Control and Opt., 25 (1987), pp.868-904. | MR 893988 | Zbl 0664.93034

[12] H.J. Sussmann, Regular synthesis for time-optimal control of single-input real-analytic systems in the plane, SIAM J. Control and Opt., 25 (1987), pp. 1145-1162. | MR 905037 | Zbl 0696.93026

[13] H.J. Sussmann, Envelopes, Higher-Order Optimality Conditions, and Lie Brackets, Proceedings of the 1989 I.E. E. E. Conference on Decision and Control. | MR 1038992

[14] H.J. Sussmann, Synthesis, presynthesis, sufficient conditions for optimality and subanalytic sets, in Nonlinear Controllability and Optimal Control, H. J. Sussmann ed., Marcel Dekker, New York (1990), pp. 1-19. | MR 1061381 | Zbl 0712.49015