@article{RSMUP_1996__95__37_0, author = {Adolphson, Alan and Sperber, Steven}, title = {Differential modules defined by systems of equations}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, volume = {96}, year = {1996}, pages = {37-57}, mrnumber = {1405354}, zbl = {0944.12003}, language = {en}, url = {http://dml.mathdoc.fr/item/RSMUP_1996__95__37_0} }
Adolphson, Alan; Sperber, Steven. Differential modules defined by systems of equations. Rendiconti del Seminario Matematico della Università di Padova, Tome 96 (1996) pp. 37-57. http://gdmltest.u-ga.fr/item/RSMUP_1996__95__37_0/
[1] Hypergeometric functions and rings generated by monomials, Duke Math. J., 73 (1994), pp. 269-290. | MR 1262208 | Zbl 0804.33013
,[2] Exponential sums and Newton polyhedra: Cohomology and estimates, Ann. Math., 130 (1989), 367-406. | MR 1014928 | Zbl 0723.14017
- ,[3] The number of roots of a system of equations, Func. Anal. Appl., 9 (1975), pp. 183-185 (English translation). | MR 435072 | Zbl 0328.32001
,[4] F. LOESER, Hypergeometric series, Japan. J. Math., 19 (1993), pp. 81-129. | MR 1231511 | Zbl 0796.12005
-[5] Thesis, Princeton University (1966).
,[6] On the differential equations satisfied by period matrices, Publ. Math. I.H.E.S., 35 (1968), pp. 223-258. | Numdam | MR 242841 | Zbl 0159.22502
,[7] Newton polyhedra and toroidal varieties, Func. Anal. Appl., 11 (1977), pp. 289-296 (English translation). | MR 476733 | Zbl 0445.14019
,[8] Newton polyhedra and the genus of complete intersections, Func. Anal. Appl., 12 (1978), pp. 38-46 (English translation). | MR 487230 | Zbl 0406.14035
,[9] Polyèdres de Newton et nombres de Milnor, Invent. Math., 32 (1976), pp. 1-31. | MR 419433 | Zbl 0328.32007
,[10] Commutative Ring Theory, Cambridge University Press, Cambridge (1986). | MR 879273 | Zbl 0603.13001
,[11] Algebraic Topology, McGraw-Hill, New York (1966). | MR 210112 | Zbl 0145.43303
,