@article{RSMUP_1996__95__217_0, author = {Montecchiari, Piero}, title = {Multiplicity results for a class of semilinear elliptic equations on $\mathbb {R}^m$}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, volume = {96}, year = {1996}, pages = {217-252}, mrnumber = {1405365}, zbl = {0866.35043}, language = {en}, url = {http://dml.mathdoc.fr/item/RSMUP_1996__95__217_0} }
Montecchiari, Piero. Multiplicity results for a class of semilinear elliptic equations on $\mathbb {R}^m$. Rendiconti del Seminario Matematico della Università di Padova, Tome 96 (1996) pp. 217-252. http://gdmltest.u-ga.fr/item/RSMUP_1996__95__217_0/
[1] Multibump solutions for Duffing-like systems, Preprint S.I.S.S.A. (1994). | MR 1463913 | Zbl 0880.34045
- - ,[2] Sobolev Spaces, Academic Press, New York (1975). | MR 450957 | Zbl 0314.46030
,[3] Y.Y. LI, On «Multibump» Bound States for Certain Semilinear Elliptic Equations, Research Report No. 92-NA-012, Carnegie Mellon University (1992). | MR 1206338 | Zbl 0796.35043
-[4] G. TARANTELLO, On semilinear elliptic equations with indefinite nonlinearities, Calc. Var., 1 (1993), pp. 439-475. | MR 1383913 | Zbl 0809.35022
-[5] Critical points and nonlinear variational problems, Bul. Soc. Math. France, 120 (1992). | Numdam | MR 1164129 | Zbl 0766.49006
,[6] The shadowing lemma for elliptic PDE, in Dynamics of Infinite Dimensional Systems, S. N. Chow and J. K. Hale eds., F37(1987). | MR 921893 | Zbl 0653.35030
,[7] MONTECCHIARI, Homoclinic orbits for second order Hamiltonian systems with potential changing sign, Comm. Appl. Nonlinear Anal., 1 (1994), pp. 97-129. | MR 1280118 | Zbl 0867.70012
- P.[8] A Variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann., 288 (1990), pp. 133-160. | MR 1070929 | Zbl 0731.34050
- - ,[9] Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991), pp. 693-727. | MR 1119200 | Zbl 0744.34045
- ,[10] Homoclinic type solutions for a semilinear elliptic PDE on Rn, Comm. Pure Appl. Math., 45 (1992), pp. 1217-1269. | MR 1181725 | Zbl 0785.35029
- ,[11] On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rat. Mech. Anal., 91 (1986), pp. 283-308. | MR 807816 | Zbl 0616.35029
- ,[12] Existence and nonexistence results for semilinear elliptic problems in unbounded domains, Proc. Roy. Soc. Edinburgh, 93 (1982), pp. 1-14. | MR 688279 | Zbl 0506.35035
- ,[13] Uniqueness positive solutions of Δu - u + uP = 0 in Rn, Arch. Rat. Mech. Anal., 105 (1985), pp. 243-266. | Zbl 0676.35032
,[14] Periodic solution of a second order superquadratic system with change of sign of potential, J. Diff. Eq., 93(1991), pp. 1-18. | MR 1122304 | Zbl 0736.34041
,[15] The concentration-compactness principle in the calculus of variations. The locally compact case, part 1, Ann. Inst. Henri Poincaré, 1 (1984), pp. 109-145. | Numdam | MR 778970 | Zbl 0541.49009
,[16] The concentration-compactness principle in the calculus of variations. The locally compact case, part 2, Ann. Inst. Henri Poincaré, 1 (1984), pp. 223-283. | Numdam | MR 778974 | Zbl 0704.49004
,[17] Un'osservazione su un teorema di Brouwer, Boll. Unione Mat. Ital., 3 (1940), pp. 5-7. | JFM 66.0217.01 | MR 4775
,[18] Existence and multiplicity of homoclinic solutions for a class of asymptotically periodic second order Hamiltonian systems, Ann. Mat. Pura Appl. (to appear). See also: Multiplicity of homoclinic solutions for a class of asymptotically periodic second order Hamiltonian systems, Rend. Mat. Ace. Lincei, s. 9, 4 (1993), pp. 265-271. | MR 1269616 | Zbl 0802.34052
,[19] The structure of the critical set in the mountain pass theorem, Tran. Am. Math. Soc., 299 (1987), pp. 115-132. | MR 869402 | Zbl 0611.58019
- ,[20] Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh, 114-A (1990), pp. 33-38. | MR 1051605 | Zbl 0705.34054
,[21] A note on a semilinear elliptic equation on Rm, in A tribute in honour of Giovanni Prodi, A. Ambrosetti and A. Marino eds., Quaderni Scuola Normale Superiore, Pisa (1991). | MR 1205391 | Zbl 0836.35045
,[22] Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z., 209 (1992), pp. 27-42. | MR 1143210 | Zbl 0725.58017
,[23] Looking for the Bernoulli shift, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 10 (1993), pp. 561-590. | Numdam | MR 1249107 | Zbl 0803.58013
,[24] Hamilton's principle, Math. Z., 159 (1978), pp. 235-248. | MR 501163 | Zbl 0366.58003
,