@article{RSMUP_1996__95__1_0, author = {Zanardo, Paolo and Zannier, Umberto}, title = {Commutative domains large in their $\mathfrak {M}$-adic completions}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, volume = {96}, year = {1996}, pages = {1-9}, mrnumber = {1405350}, zbl = {0876.13011}, language = {en}, url = {http://dml.mathdoc.fr/item/RSMUP_1996__95__1_0} }
Zanardo, P.; Zannier, U. Commutative domains large in their $\mathfrak {M}$-adic completions. Rendiconti del Seminario Matematico della Università di Padova, Tome 96 (1996) pp. 1-9. http://gdmltest.u-ga.fr/item/RSMUP_1996__95__1_0/
[1] Indecomposable modules over Nagata valuation domains, to appear. | MR 1239795 | Zbl 0824.13007
- ,[2] I. MACDONALD, Introduction to Commutative Algebra, Addison-Wesley (1969). | MR 242802 | Zbl 0175.03601
-[3] Algèbre Commutative, Masson, Paris (1985).
,[4] Every countable reduced torsion free ring is an endomorphism ring, Proc. London Math. Soc. (3), 13 (1963), pp. 687-710. | MR 153743 | Zbl 0116.02403
,[5] Fields and Rings, University of Chicago Press, Chicago (1972). | MR 349646 | Zbl 1001.16500
,[6] Local Rings, Wiley, Interscience (1962). | MR 155856 | Zbl 0123.03402
,[7] The rank of a completion of a Dedekind domain, Comm. in Algebra, 21 (12) (1993), pp. 4561-574. | MR 1242848 | Zbl 0792.13007
,[8] A class of rings which are the endomorphism rings of some torsion-free abelian groups, Ann. Scuola Norm. Sup. Pisa, 23 (1969), pp. 143-53. | Numdam | MR 242948 | Zbl 0188.08903
,[9] On endomorphism algebras over admissible Dedekind domains, Rend. Sem. Mat. Univ. Padova, 79 (1988), pp. 163-72. | Numdam | MR 964028 | Zbl 0655.20042
,[10] On the completion of a valuation ring, Math. Ann., 155 (1964), pp. 392-396. | MR 164960 | Zbl 0136.32102
,[11] Kurosch invariants for torsion-free modules over Nagata valuation domains, J. Pure Appl. Algebra, 82 (1992), pp. 195-209. | MR 1182938 | Zbl 0781.13004
,