@article{RSMUP_1990__83__183_0, author = {Beir\~ao Da Veiga, Hugo}, title = {Periodic solutions for a class of autonomous hamiltonian systems}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, volume = {84}, year = {1990}, pages = {183-192}, mrnumber = {1066440}, zbl = {0709.34035}, language = {en}, url = {http://dml.mathdoc.fr/item/RSMUP_1990__83__183_0} }
Beirão da Veiga, H. Periodic solutions for a class of autonomous hamiltonian systems. Rendiconti del Seminario Matematico della Università di Padova, Tome 84 (1990) pp. 183-192. http://gdmltest.u-ga.fr/item/RSMUP_1990__83__183_0/
[B] Some critical point theorems and applications, Comm. Pure Appl. Math., 33 (1980), pp. 147-172. | MR 562548 | Zbl 0472.58009
,[BC] Periodic solutions of nonlinear wave equations and Hamiltonian systems, Amer. J. Math., 103 (1981), pp. 559-570. | MR 618324 | Zbl 0462.35004
- ,[C1] Periodic solutions of Hamiltonian inclusions, J. Diff. Eq., 40 (1980), pp. 1-6. | MR 614215 | Zbl 0461.34030
,[C2] Periodic solutions of Hamilton's equations and local minima of the dual action, Trans. Amer. Math. Soc., 287 (January 1985), pp. 239-251. | MR 766217 | Zbl 0596.49030
,[CE] Hamiltonian trajectories having prescribed minimal period, Comm. Pure Appl. Math., 33 (1980), pp. 103-116. | MR 562546 | Zbl 0403.70016
- ,[E] Periodic solutions of Hamiltonian equations and a theorem of P. Rabinowitz, J. Diff. Eq., 34 (1979), pp. 523-534. | MR 555325 | Zbl 0446.70019
,[FHR] Borsuk-Ulam theorems for arbitrary S1 actions and applications, Trans. Amer. Math. Soc., 274 (1982), pp. 345-360. | MR 670937 | Zbl 0506.58010
- - ,[R1] Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 31 (1978), pp. 157-186. | MR 467823 | Zbl 0358.70014
,[R2] Some critical point theorems and applications to semilinear elliptic partial differential equations, Ann. Sc. Norm. Sup. Pisa, 2 (1978), pp. 215-233. | Numdam | MR 488128 | Zbl 0375.35026
,[R3] Periodic solutions of Hamiltonian system: A survey, SIAM J. Math. Anal., 13 (1982), pp. 343-352. | MR 653462 | Zbl 0521.58028
,[R4] Minimax methods in critical point theory with applications to differential equations, CBMS Lecture Notes, N. 65. | Zbl 0609.58002
,