@article{RSMUP_1989__81__85_0, author = {Del Santo, Daniele}, title = {Uniqueness of the Cauchy problem for a second order operator}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, volume = {82}, year = {1989}, pages = {85-93}, mrnumber = {1020188}, zbl = {0699.35039}, language = {en}, url = {http://dml.mathdoc.fr/item/RSMUP_1989__81__85_0} }
Del Santo, Daniele. Uniqueness of the Cauchy problem for a second order operator. Rendiconti del Seminario Matematico della Università di Padova, Tome 82 (1989) pp. 85-93. http://gdmltest.u-ga.fr/item/RSMUP_1989__81__85_0/
[1] E. C. ZACHMANOUGLOU, Unique continuation of solutions of partial differential equations and inequalities from manifolds of any dimension, Duke Math. J., 45 (1978), pp. 1-13. | MR 486484 | Zbl 0373.35001
-[2] On the Cauchy Problem, Science Press, Beijing (1985). | MR 860041 | Zbl 0616.35002
,[3] Uniqueness and non-uniqueness in the Cauchy problem for a class of operators of degenerate type, J. Diff. Equat., 51 (1984), pp. 78-96. | MR 727031 | Zbl 0488.35002
,[4] Non-uniqueness in the Cauchy problem for partial differential operators with multiple characteristics - I, Comm. P.D.E.'s, 9 (1) (1984), pp. 63-106. | MR 735149 | Zbl 0559.35001
,[5] Uniqueness in the Cauchy problem for a degenerated elliptic second order equation, in Differential Geometry and Complex Analysis, Springer-Verlag, Berlin (1985), pp. 213-218. | MR 780047 | Zbl 0572.35043
,[6] On the Cauchy problem for weakly hyperbolic equations, Comm. Pure Appl. Math., 23 (1970), pp. 569-586. | MR 264227
,[7] L'unicité du prolongement des équations elliptiques dégénérées, Tohoku Math. J., 34 (1982), pp. 239-249. | MR 664731 | Zbl 0476.35016
,[8] Uniqueness in the Cauchy Problem, Birkäuser, Boston (1983). | MR 701544 | Zbl 0521.35003
and -[9] Second order elliptic equations and the uniqueness of the Cauchy problem, Bol. Soc. Bras. Mat., 12, n. 2 (1981), pp. 27-32. | MR 688186 | Zbl 0571.35023
,