@article{RSMUP_1989__81__107_0, author = {Casolo, Carlo}, title = {Groups with finite conjugacy classes of subnormal subgroups}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, volume = {82}, year = {1989}, pages = {107-149}, mrnumber = {1020190}, zbl = {0692.20028}, language = {en}, url = {http://dml.mathdoc.fr/item/RSMUP_1989__81__107_0} }
Casolo, Carlo. Groups with finite conjugacy classes of subnormal subgroups. Rendiconti del Seminario Matematico della Università di Padova, Tome 82 (1989) pp. 107-149. http://gdmltest.u-ga.fr/item/RSMUP_1989__81__107_0/
[1] Automorphismengruppen von Gruppen mit endlichen Bahnen gleichmassig beschränkter Mächtigkeit, J. Reine Angew. Math., 262 (1973), pp. 93-119. | MR 325788 | Zbl 0275.20079
,[2] Subgroups of finite index in generalized T-groups, to appear. | Numdam | MR 988125 | Zbl 0692.20029
,[3] Power automorphisms of a group, Math. Zeit., 107 (1968), pp. 335-356. | MR 236253 | Zbl 0169.33801
,[4] Groups in which every infinite subnormal subgroup is normal, J. Algebra, 96 (1985), pp. 566-580. | MR 810546 | Zbl 0572.20016
- ,[5] Infinite Abelian Groups, Academic Press, New York-London (1970- 1973). | Zbl 0209.05503
,[6] Groups with restrictions on their infinite subnormal subgroups, Proc. Edimburgh Math. Soc. 31 (1988), pp. 231-241. | MR 989756 | Zbl 0644.20020
,[7] Subgroups of finite index in T-groups, Boll. Un. Mat. It., (6) 4-B (1985), pp. 829-841. | MR 831294 | Zbl 0598.20027
- ,[8] The ring of automorphisms for which every subgroup of an abelian group is invariant, J. Indian Math. Soc., 10 (1946), pp. 29-31. | MR 20081 | Zbl 0061.03502
,[9] Some explicit bounds in groups with finite derived groups, Proc. London Math. Soc., (3) 11 (1961), pp. 23-56. | MR 124433 | Zbl 0218.20034
,[10] Groups covered by permutable subsets, J. London Math. Soc., 29 (1954), pp. 236-248. | MR 62122 | Zbl 0055.01604
,[11] Griups with finite classes of conjugate subgroups, Math. Zeit., 63 (1955), pp. 76-96. | MR 72137 | Zbl 0064.25201
,[12] Groups in which normality is a transitive relation, Proc. Cambridge Phil. Soc., 60 (1964), pp. 21-38. | MR 159885 | Zbl 0123.24901
,[13] A Course in the Theory of Groups, Springer-Verlag, New York-Heidelberg -Berlin (1982). | MR 648604 | Zbl 0483.20001
,[14] Groups with boundedly finite automorphisms classes, Rend. Sem. Mat. Univ. Padova, 71 (1984), pp. 273-286. | Numdam | MR 769443 | Zbl 0543.20025
- ,[15] Group Theory, Prentice-Hall (1964). | MR 167513 | Zbl 0126.04504
,