@article{RSMUP_1988__80__65_0, author = {Beidleman, James C. and Pilar Gallego, M.}, title = {Conjugate $\pi $-normally embedded fitting functors}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, volume = {80}, year = {1988}, pages = {65-82}, zbl = {0667.20014}, language = {en}, url = {http://dml.mathdoc.fr/item/RSMUP_1988__80__65_0} }
Beidleman, James C.; Pilar Gallego, M. Conjugate $\pi $-normally embedded fitting functors. Rendiconti del Seminario Matematico della Università di Padova, Tome 80 (1988) pp. 65-82. http://gdmltest.u-ga.fr/item/RSMUP_1988__80__65_0/
[1] Strict normality in Fitting classes I, J. Algebra, 51 (1978), pp. 211-217. | MR 486113 | Zbl 0381.20016
- ,[2] Strict normality in Fitting classes III, Comm. in Algebra, 10 (7) (1982), pp. 741-766. | MR 650870 | Zbl 0487.20012
- ,[3] Fittingfunktoren in endlichen auflösbaren Gruppen I, Math. Z., 182 (1983), pp. 359-384. | MR 696533 | Zbl 0518.20014
- - ,[4] Fitting functors in finite solvable groups II, Math. Proc. Camb. Phil. Soc., 101 (1987), pp. 37-55. | MR 877699 | Zbl 0632.20013
- - ,[5] -normally embedded subgroups of finite soluble groups, J. Algebra, 16 (1970), pp. 442-455. | MR 268275 | Zbl 0232.20021
, p[6] Some examples in the theory of injectors of finite soluble groups, Math. Z., 127 (1972), pp. 145-156. | MR 314964 | Zbl 0226.20013
,[7] Über Vertauschbarkeit, normale Einbettung und Dominanz bei Fittingklassen endlicher auflösbarer Gruppen, Arch. Math., 35 (1980), pp. 319-327. | MR 602574 | Zbl 0447.20019
- ,[8] The radical of the Fitting class defined by a Fitting functor and a set of primes, Arch. Math., 48 (1987), pp. 36-39. | MR 878005 | Zbl 0592.20024
,[9] On the Sylow systems of a soluble group, Proc. London Math. Soc., 43 (1937), pp. 316-323. | JFM 63.0069.04
,[10] On Fischer's dualization of formation theory, Proc. London Math. Soc., 19 (3) (1969), pp. 193-207. | MR 244381 | Zbl 0169.34201
,[11] On the theory of Fitting classes of finite soluble groups, Math. Z., 131 (1973), pp. 103-115. | MR 318300 | Zbl 0243.20015
,