Boundary-value problems for a class of first order partial differential equations in Sobolev spaces and applications to the Euler flow
Beirão da Veiga, H.
Rendiconti del Seminario Matematico della Università di Padova, Tome 80 (1988), p. 247-273 / Harvested from Numdam
@article{RSMUP_1988__79__247_0,
     author = {Beir\~ao Da Veiga, Hugo},
     title = {Boundary-value problems for a class of first order partial differential equations in Sobolev spaces and applications to the Euler flow},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     volume = {80},
     year = {1988},
     pages = {247-273},
     mrnumber = {964034},
     zbl = {0709.35082},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RSMUP_1988__79__247_0}
}
Beirão da Veiga, H. Boundary-value problems for a class of first order partial differential equations in Sobolev spaces and applications to the Euler flow. Rendiconti del Seminario Matematico della Università di Padova, Tome 80 (1988) pp. 247-273. http://gdmltest.u-ga.fr/item/RSMUP_1988__79__247_0/

[1] C. Bardos - D. BREZIS - H. BREZIS, Perturbations singulières et prolongements maximaux d'opérateurs positifs, Arch. Rat. Mech. Analysis, 53 (1973), pp. 69-100. | MR 348247 | Zbl 0281.47028

[2] C. Bardos - J. RAUCH, Maximal positive boundary value problems as limits of singular perturbation problems, Trans. Amer. Math. Soc., 270 (1982), pp. 377-408. | MR 645322 | Zbl 0485.35010

[3] H. Beirão Da Veiga, On an Euler type equation in Hydrodynamics, Ann. Mat. Pura Appl., 125 (1980), pp. 279-295. | MR 605211 | Zbl 0576.76010

[4] H. Beirão Da Veiga - A. Valli, Existence of C∞ solutions of the Euler equations for non-homogeneous fluids, Comm. Partial Diff. Eq., 5 (1980), pp. 95-107. | Zbl 0437.35059

[5] H. Beirão Da Veiga, Homogeneous and non-homogeneous boundary value problems for first order linear hyperbolic systems arising in fluid mechanics, Comm. in Partial Differential Equations, part I: 7 (1982), pp. 1135-1149; part II: 8 (1983), pp. 407-432. | Zbl 0503.35052

[6] H. Beirão Da Veiga, An Lp-theory for the n-dimensional, stationary, compressible, Navier-Stokes equations, and the incompressible limit for compressible fluids. The equilibrium solutions, Comm. Math. Phys., 109 (1987), pp. 229-248. | MR 880415 | Zbl 0621.76074

[7] H. Beirão Da Veiga, On a stationary transport equation, Ann. Univ. Ferrara, 32 (1986), pp. 79-91. | MR 901589 | Zbl 0641.35006

[8] H. Beirão Da Veiga, Existence results in Sobolev spaces for a stationary transport equation, U.T.M. 203, June 1986, Univ. Trento, to appear in the volume dedicated by « Ricerche di Matematica », to the memory of Professor C. Miranda. | MR 956025 | Zbl 0691.35087

[9] H. Beirão Da Veiga, Kato's perturbation theory and well-posedness for the Euler equations in bounded domains, Arch. Rat. Mech. Anal., to appear. | Zbl 0672.35044

[10] J.P. Bourguignon - H. Brezis, Remarks on the Euler equation, J. Funct. Analysis, 15 (1974), pp. 341-363. | MR 344713 | Zbl 0279.58005

[11] D.G. Ebin - J. E. MARSDEN, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math., 92 (1970), pp. 102-163. | MR 271984 | Zbl 0211.57401

[12] K.O. Friedrichs, Symmetric positive linear differential equations, Comm. Pure Appl. Math., 11 (1958), pp. 333-418. | MR 100718 | Zbl 0083.31802

[13] D. Fujiwara - H. Morimoto, An Lr-theorem of the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo, 24 (1977), pp. 685-700. | MR 492980 | Zbl 0386.35038

[14] T. Kato, Linear evolution equations of « hyperbolic » type, J. Fac. Sci. Univ. Tokyo, 17 (1970), pp. 241-258. | MR 279626 | Zbl 0222.47011

[15] T. Kato, Linear evolution equations of « hyperbolic » type II, J. Math. Soc. Japan, 25 (1973), pp. 648-666. | MR 326483 | Zbl 0262.34048

[16] T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, in « Spectral theory and differential equations », Lecture Notes in Mathematics, vol. 448, Springer-Verlag (1975). | MR 407477 | Zbl 0315.35077

[17] T. Kato - C. Y. LAI, Nonlinear evolution equations and the Euler flow, J. Funct. Analysis, 56 (1984), pp. 15-28. | MR 735703 | Zbl 0545.76007

[18] R.V. Kohn - B.D. Lowe, A variational method for parameter identification, to appear. | Numdam | MR 934704 | Zbl 0636.65127

[19] P.D. Lax - R.S. Phillips, Local boundary conditions for dissipative symmetric linear differential operators, Comm. Pure Appl. Math., 13 (1960), pp. 427-455. | MR 118949 | Zbl 0094.07502

[20] A. Majda - S. Osher, Initial boundary value problems for hyperbolic equations with uniformly characteristic boundary, Comm. Pure Appl. Math., 28 (1975), pp. 607-675. | MR 410107 | Zbl 0314.35061

[21] J. Rauch, Symmetric positive systems with boundary characteristic of constant multiplicity, Trans. Amer. Math. Soc., 291 (1985), pp. 167-187. | MR 797053 | Zbl 0549.35099

[22] J. Rauch - F. Massey, Differentiability of solutions to hyperbolic initial-boundary value problems, Trans. Amer. Math. Soc., 189 (1974), pp. 303-318. | MR 340832 | Zbl 0282.35014

[23] S. Schochet, Singular limits in bounded domains for quasilinear symmetric hyperbolic systems having a vorticity equation, to appear. | MR 891336 | Zbl 0633.35047

[24] R. Temam, On the Euler equations of incompressible perfect fluids, J. Funct. Analysis, 20 (1975), pp. 32-43. | Zbl 0309.35061

[25] H. Beirão Da Veiga, An well-posedness theorem for nonhomogeneous inviscid fluids via a perturbation theorem, to appear. | Zbl 0682.35012