@article{RSMUP_1987__77__305_0, author = {Brunner, Norbert}, title = {Spaces of urelements, II}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, volume = {78}, year = {1987}, pages = {305-315}, mrnumber = {904626}, zbl = {0668.54014}, language = {en}, url = {http://dml.mathdoc.fr/item/RSMUP_1987__77__305_0} }
Brunner, Norbert. Spaces of urelements, II. Rendiconti del Seminario Matematico della Università di Padova, Tome 78 (1987) pp. 305-315. http://gdmltest.u-ga.fr/item/RSMUP_1987__77__305_0/
[1] Classification of spaces, Bull. Acad. Polon. Sc., 15 (1967), pp. 773-778. | MR 225278 | Zbl 0171.43403
,[2] Total negation of a topological property, Illinois J. M., 23 (1979), pp. 241-252. | MR 528560 | Zbl 0405.54003
,[3] Theorie der trigonometrischen Reihe, Sitzingsber. Leipzig, 60, (1908), pp. 325-338. | JFM 39.0474.02
:[4] A model without ultrafilters, Bull. Acad. Polon. Sc., 25 (1977), pp. 329-331. | MR 476510 | Zbl 0365.02054
,[5] σ-kompakte Raüme, Manuscripta Math., 38 (1982), pp. 325-379. | Zbl 0504.54004
,[6] Lindelöf-Raüme und AC, Anz. Akad. Wiss. Wien, 119 (1982), pp. 161-165. | MR 728812 | Zbl 0529.03030
,[7] Dedekind-Endlichkeit und Wohlordenbarkeit, Monatshefte Math., 94 (1982), pp. 9-31. | MR 670012 | Zbl 0481.03030
,[8] Spaces of Urelements, Rend. Sem. Mat. Univ. Padova, 74 (1985), pp. 7-13. | Numdam | MR 818710 | Zbl 0601.54023
,[9] Subsets of ω, Amer. Math. Monthly, 78 (1971), pp. 536-537.
,[10] Resolvable spaces, Fund. Math., 55 (1964), pp. 87-93. | MR 163279 | Zbl 0139.40401
,[11] A Stone-Čech theorem without AC, Fund. Math., 63 (1968), pp. 97-110. | MR 236880 | Zbl 0185.26401
,[12] Horrors of topology, Proc. Amer. Math. Soc., 95 (1985), pp. 101-105. | MR 796455 | Zbl 0574.03039
,[13] Maximal connected T2-spaces, Mat. Zametki, 26 (1979), pp. 939-948. | MR 567231 | Zbl 0435.54018
,[14] General topology, Polish Sc. Publ., Warsaw (1977). | MR 500780 | Zbl 0373.54002
,[15] Models of ZF, Springer Lecture Notes 223 (1971). | MR 351810 | Zbl 0269.02029
,[16] All uncountable cardinals can be singular, Israel J. Math., 35 (1980), pp. 61-88. | MR 576462 | Zbl 0439.03036
,[17] V. KANNAN - H. RAJAGOPALAN, Compactness, Proc. Amer. Math. Soc., 77 (1979), pp. 421-423. | MR 545607 | Zbl 0417.54004
-[18] A problem in set theoretic topology, Duke Math. J., 10 (1943), pp. 309-333. | MR 8692 | Zbl 0060.39407
,[19] The axiom of choice, North Holland Studies in Logic, 75 (1973). | MR 396271 | Zbl 0259.02051
,[20] Disjoint dense subsets, Math. Sbornik, 21 (1947), pp. 3-12. | MR 21679
,[21] Problems concerning countably compact spaces, Rocky Mt. J. Math., 5 (1975), pp. 95-106. | MR 423298 | Zbl 0296.54018
- ,[22] Une décomposition, Compt. Rend. Acad. Paris, 165 (1917), pp. 422-424. | JFM 46.0294.01
- ,[23] Lindelöf property in MI spaces, Illinois J. Math., 25 (1981), 644-648. | MR 630841 | Zbl 0514.54018
,[24] Axiomatik der Mengenlehre, Z. Math. Logik und Grundl. Math., 3 (1957), pp. 173-210. | MR 99297 | Zbl 0079.07605
,[25] Connected sets, Trans. Amer. Math. Soc., 32 (1930), pp. 926-943. | JFM 56.1138.03 | MR 1501572
,