@article{RSMUP_1987__77__193_0, author = {Marzantowicz, Wac\l aw and Parusi\'nski, Adam}, title = {Periodic solutions near an equilibrium of a differential equation with a first integral}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, volume = {78}, year = {1987}, pages = {193-206}, zbl = {0651.34040}, language = {en}, url = {http://dml.mathdoc.fr/item/RSMUP_1987__77__193_0} }
Marzantowicz, Wacław; Parusiński, Adam. Periodic solutions near an equilibrium of a differential equation with a first integral. Rendiconti del Seminario Matematico della Università di Padova, Tome 78 (1987) pp. 193-206. http://gdmltest.u-ga.fr/item/RSMUP_1987__77__193_0/
[1] Global bifurcation of periodic orbits, Amer. J. Math., 100 (1978), pp. 263-292. | MR 474406 | Zbl 0386.34040
- ,[2] J. MALLET-PARET - J. YORKE, Global Hopf bifurcation from multiple eigenvalue, Nonlinear Anal., 2 (1978), pp. 753-763. | MR 512165 | Zbl 0407.47039
-[3] A new degree for S1-invariant gradient mappings and applications, notes.
,[4] RABINOWITZ, Generalized cohomological index theories for Lie group action with an application to bifurcation questions for Hamiltonian systems, Invent. Math., 45 (1978), pp. 139-174. | MR 478189 | Zbl 0403.57001
- P.[5] Obstruction theory and multiparameter Hopf bifurcation, Inst. Mat. Applic. Sis. UNAM, Mexico, No. 322 (1982).
,[6] Periodic solutions near an equilibrium of a differential equation with a first integral, SISSA, Trieste, Preprint No. 45/84/M (1984).
,[7] Periodic orbits near an equilibrium and a theorem by A. Weinstein, Comm. Pure Appl. Math., 29 (1976), pp. 727-746. | MR 426052 | Zbl 0346.34024
,[8] Hopf bifurcation and the center theorem of Liapunov with resonance cases, J. Math. Anal. Appl., 63 (1978), pp. 354-370. | MR 477298 | Zbl 0383.34026
,[9] Normal modes for non-linear Hamiltonian systems, Invent. Math., 20 (1973), pp. 47-57. | MR 328222 | Zbl 0264.70020
,