An Ω + -estimate for the number of lattice points in a sphere
Nowak, Werner Georg
Rendiconti del Seminario Matematico della Università di Padova, Tome 74 (1985), p. 31-40 / Harvested from Numdam
Publié le : 1985-01-01
@article{RSMUP_1985__73__31_0,
     author = {Nowak, Werner Georg},
     title = {An $\Omega \_+$-estimate for the number of lattice points in a sphere},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     volume = {74},
     year = {1985},
     pages = {31-40},
     zbl = {0519.10042},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RSMUP_1985__73__31_0}
}
Nowak, Werner Georg. An $\Omega _+$-estimate for the number of lattice points in a sphere. Rendiconti del Seminario Matematico della Università di Padova, Tome 74 (1985) pp. 31-40. http://gdmltest.u-ga.fr/item/RSMUP_1985__73__31_0/

[1] P.T. Bateman, On the representation of a number as the sum of three squares, Trans. Amer. Math. Soc., 71 (1951), pp. 70-101. | MR 42438 | Zbl 0043.04603

[2] B.C. Berndt, On the average order of a class of arithmetical functions I, II, J. Number Theory, 3 (1971), pp. 184-203 and 288-305. | MR 284409 | Zbl 0219.10050

[3] K. Chandrasekharan - R. Narasimhan, Hecke's functional equation and the average order of arithmetical functions, Acta Arith., 6 (1961), pp. 487-503. | MR 126423 | Zbl 0101.03703

[4] J.R. Chen, The lattice points in a circle, Chin. Math., 4 (1963), pp. 322-339. | MR 184912 | Zbl 0147.03302

[5] K. Corrádi - I. Kátai, A comment on K. S. Gangadharan's paper entitled « Two classical lattice point problems» (in Hungarian), Magyar. Tud. Akad. Mat. Fiz. Oszt. Közl., 17 (1967), pp. 89-97. | MR 215800 | Zbl 0163.04103

[6] F. Fricker, Einführung in die Gitterpunktlehre, Basel, Boston, Suttgart: Birkhäuser, 1982. | MR 673938 | Zbl 0489.10001

[7] K.S. Gangadharan, Two classical lattice point problems, Proc. Cambridge, 57 (1961), pp. 699-721. | MR 130225 | Zbl 0100.03901

[8] J.L. Hafner, On the average order of a class of arithmetical functions, J. Number Theory, 15 (1982), pp. 36-76. | MR 666348 | Zbl 0495.10027

[9] G.H. Hardy, On the expression of a number as the sum of two squares, Quart. J. Math., 46 (1915), pp. 263-283. | JFM 45.1253.01

[10] S. Kanemitsu, Some results in the divisor problems, to appear.

[11] E. Landau, Elementary number theory, 2nd ed., New York, Chelsea Publ. Co., 1955. | MR 92794 | Zbl 0079.06201

[12] D. Redmond, Omega theorems for a class of Dirichlet series, Rocky Mt. J. Math., 9 (1979), pp. 733-748. | MR 560250 | Zbl 0388.10027

[13] G. Szegö, Beiträge zur Theorie der Laguerreschen Polynome, II: Zahlentheoretische Anwendungen, Math. Z., 25 (1926), pp. 388-404. | JFM 52.0175.03 | MR 1544819

[14] 1 M. Vinogradov, On the number of lattice points in a sphere (in Russian), Izv. Akad. Nauk. SSSR Ser. Mat., 27 (1963), pp. 957-968. | MR 156821 | Zbl 0116.03901

[15] I.M. Vinogradov, Special variants of the method of trigonometric sums (in Russian), Moscow, Nauka, 1976. | MR 469878 | Zbl 0429.10023