A generalization of separable torsion-free abelian groups
Fuchs, L. ; Viljoen, G.
Rendiconti del Seminario Matematico della Università di Padova, Tome 74 (1985), p. 15-21 / Harvested from Numdam
Publié le : 1985-01-01
@article{RSMUP_1985__73__15_0,
     author = {Fuchs, Laszlo and Viljoen, G.},
     title = {A generalization of separable torsion-free abelian groups},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     volume = {74},
     year = {1985},
     pages = {15-21},
     mrnumber = {799892},
     zbl = {0571.20048},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RSMUP_1985__73__15_0}
}
Fuchs, L.; Viljoen, G. A generalization of separable torsion-free abelian groups. Rendiconti del Seminario Matematico della Università di Padova, Tome 74 (1985) pp. 15-21. http://gdmltest.u-ga.fr/item/RSMUP_1985__73__15_0/

[1] D. Arnold - R. Hunter - F. Richman, Global Azumaya theorems in additive categories, J. Pure Appl. Algebra, 16 (1980), pp. 223-242. | MR 558485 | Zbl 0443.18014

[2] J.D. Botha - P.J. Gräbe, On torsion-free abelian groups whose endomorphism rings are principal ideal domains, Comm. in Alg., Il (1983), pp. 1343-1354. | MR 697619 | Zbl 0515.20034

[3] B. Charles, Sous-groupes fonctoriels et topologies, Etudes sur les Groupes Abéliens, ed. B. Charles (Dunod, Paris, 1968), pp. 75-92. | MR 240195 | Zbl 0179.32701

[4] E.F. Cornelius Jr., A sufficient condition for separability, J. Algebra, 67 (1980), pp. 476-478. | MR 602074 | Zbl 0448.20051

[5] L. Fuchs, Infinite abelian groups, Vol. I, Academic Press, New York and London, 1970. | MR 255673 | Zbl 0209.05503

[6] L. Fuchs, Infinite abelian groups, Vol. II, Academic Press, New York and London, 1973. | MR 349869 | Zbl 0257.20035

[7] C.E. Murley, The classification of certain classes of torsion-free abelian groups, Pacific J. Math., 40 (1972), pp. 647-665. | MR 322077 | Zbl 0261.20045

[8] K.M. Rangaswamy, On strongly balanced subgroups of separable torsionfree abelian groups, Abelian Group Theory, Lecture Notes in Math. 1006 (1983), pp. 268-274. | MR 722623 | Zbl 0574.20042