Fiber products and Morita duality for commutative rings
Facchini, Alberto
Rendiconti del Seminario Matematico della Università di Padova, Tome 68 (1982), p. 143-159 / Harvested from Numdam
Publié le : 1982-01-01
@article{RSMUP_1982__67__143_0,
     author = {Facchini, Alberto},
     title = {Fiber products and Morita duality for commutative rings},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     volume = {68},
     year = {1982},
     pages = {143-159},
     mrnumber = {682707},
     zbl = {0508.13015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RSMUP_1982__67__143_0}
}
Facchini, Alberto. Fiber products and Morita duality for commutative rings. Rendiconti del Seminario Matematico della Università di Padova, Tome 68 (1982) pp. 143-159. http://gdmltest.u-ga.fr/item/RSMUP_1982__67__143_0/

[1] B. Ballet, Sur les modules linéairement compacts, Bull. Soc. Math. France, 100 (1972), pp. 345-351. | Numdam | MR 319973 | Zbl 0257.13028

[2] R. Gilmer, Multiplicative ideal theory, Marcel Dekker Inc., New York, 1972. | MR 427289 | Zbl 0248.13001

[3] I. Kaplansky, Commutative rings, Allyn and Bacon, Boston, 1970. | MR 254021 | Zbl 0203.34601

[4] W.J. Lewis, The Spectrum of a Ring as a Partially Ordered Set, J. of Algebra, 25 (1973), pp. 419-434. | MR 314811 | Zbl 0266.13010

[5] B.J. Müller, On Morita duality, Canad. J. Math., 21 (1969), pp. 1338-1347. | MR 255597 | Zbl 0198.36202

[6] B.J. Müller, Linear compactness and Morita duality, J. Algebra, 16 (1970), pp. 60-66. | MR 263875 | Zbl 0206.04803

[7] D.W. Sharpe - P. VAMOS, Injective modules, Cambridge Univ. Press, London-New York, 1972. | MR 360706 | Zbl 0245.13001

[8] P. Vamos, Rings with duality, Proc. London Math. Soc., (3) 35 (1977), pp. 275-289. | MR 450324 | Zbl 0372.16016

[9] S. Wiegand, Locally maximal Bezout domains, Proc. Amer. Math. Soc., 47 (1975), pp. 10-14. | MR 417148 | Zbl 0273.13006

[10] D. Zelinsky, Linearly compact modules and rings, Amer. J. Math., 75 (1953), pp. 79-90. | MR 51832 | Zbl 0050.10802