@article{RSMUP_1979__61__61_0, author = {Powder, Charles}, title = {An existence theorem for solutions of $n$-th order nonlinear differential equations in the complex domain}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, volume = {61}, year = {1979}, pages = {61-90}, mrnumber = {569652}, zbl = {0439.34009}, language = {en}, url = {http://dml.mathdoc.fr/item/RSMUP_1979__61__61_0} }
Powder, Charles. An existence theorem for solutions of $n$-th order nonlinear differential equations in the complex domain. Rendiconti del Seminario Matematico della Università di Padova, Tome 61 (1979) pp. 61-90. http://gdmltest.u-ga.fr/item/RSMUP_1979__61__61_0/
[1] An asymptotic analog of the Fuchs regularity theorem, J. Math. Anal. Appl., 16 (1966), pp. 138-151. | MR 212242 | Zbl 0173.33703
,[2] On the instability theory of differential polynomials, Ann. Mat. Pura Appl., 74 (1966), pp. 83-112. | MR 204785 | Zbl 0149.29702
,[3] On the asymptotic behavior of solutions near an irregular singularity, Proc. Amer. Math. Soc., 18 (1967), pp. 15-21. | MR 212243 | Zbl 0219.34040
,[4] On solutions having large rate of growth for nonlinear differential equations in the complex domain, J. Math. Anal. Appl., 22 (1968), pp. 129-143. | MR 252728 | Zbl 0155.12504
,[5] An existence theorem for solutions of second order nonlinear ordinary differential equations in the complex domain, Rend. Sem. Mat. Univ. Padova, 41 (1968), pp. 276-299. | Numdam | MR 251283 | Zbl 0187.33401
,[6] Families of principal solutions of ordinary differential equations, Trans. Amer. Math. Soc., 107 (1963), pp. 261-272. | MR 148974 | Zbl 0121.07201
,[7] Contributions to the asymptotic theory of ordinary differential equations in the complex domain, Mem. Amer. Math. Soc., no. 13 (1954), 81 pp. | MR 67290 | Zbl 0059.07701
,[8] Principal solutions of ordinary differential equations in the complex domain, Mem. Amer. Math. Soc., no. 26 (1957), 107 pp. | MR 92901 | Zbl 0101.30003
,[9] On the algebraic closure of certain partially ordered fields, Trans. Amer. Math. Soc., 105 (1962), pp. 229-250. | MR 140514 | Zbl 0113.03301
,