The homological dimension of a torsion-free abelian group of finite rank as a module over its ring of endomorphisms
Angad-Gaur, H. W. K.
Rendiconti del Seminario Matematico della Università di Padova, Tome 58 (1977), p. 299-309 / Harvested from Numdam
Publié le : 1977-01-01
@article{RSMUP_1977__57__299_0,
     author = {Angad-Gaur, H. W. K.},
     title = {The homological dimension of a torsion-free abelian group of finite rank as a module over its ring of endomorphisms},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     volume = {58},
     year = {1977},
     pages = {299-309},
     mrnumber = {526197},
     zbl = {0404.20045},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RSMUP_1977__57__299_0}
}
Angad-Gaur, H. W. K. The homological dimension of a torsion-free abelian group of finite rank as a module over its ring of endomorphisms. Rendiconti del Seminario Matematico della Università di Padova, Tome 58 (1977) pp. 299-309. http://gdmltest.u-ga.fr/item/RSMUP_1977__57__299_0/

[1] I.V. Bobylev, Endoprojective dimension of modules, Sibirskii Matematicheskii Zhurnal 16 (1975) no. 4 663-682, 883. | MR 379595 | Zbl 0313.16028

[2] A.L.S. Corner, Every countable reduced torsion-free ring is an endomorphism ring, Proc. London Math. Soc. 13 (1963) 687-710. | MR 153743 | Zbl 0116.02403

[3] A.J. Douglas and H.K. Farahat, The homological dimension of an abelian group as a module over its ring of endomorphisms, Monatsh. Math. 69 (1965), 294-305; Monatsh. Math. 76 (1972), 109-111; Monatsh. Math. 80 (1975), 37-44. | MR 185002 | Zbl 0152.00602

[4] L. Fuchs, Infinite Abelian Groups I, II. Academic Press (1970). | MR 255673 | Zbl 0257.20035

[5] J.P. Jans, Rings and Homology. Holt, Rinehert and Winston (1964). | MR 163944 | Zbl 0141.02901

[6] I. Kaplansky, Fields and Rings, The University of Chicago Press (1972). | MR 349646 | Zbl 1001.16501

[7] F. Richman and E.A. Walker, Homological dimension of abelian groups over their endomorphism rings, Proc. American Math. Soc. 54 (1976), 65-68. | MR 393279 | Zbl 0326.20049