@article{RSMUP_1977__57__299_0, author = {Angad-Gaur, H. W. K.}, title = {The homological dimension of a torsion-free abelian group of finite rank as a module over its ring of endomorphisms}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, volume = {58}, year = {1977}, pages = {299-309}, mrnumber = {526197}, zbl = {0404.20045}, language = {en}, url = {http://dml.mathdoc.fr/item/RSMUP_1977__57__299_0} }
Angad-Gaur, H. W. K. The homological dimension of a torsion-free abelian group of finite rank as a module over its ring of endomorphisms. Rendiconti del Seminario Matematico della Università di Padova, Tome 58 (1977) pp. 299-309. http://gdmltest.u-ga.fr/item/RSMUP_1977__57__299_0/
[1] Endoprojective dimension of modules, Sibirskii Matematicheskii Zhurnal 16 (1975) no. 4 663-682, 883. | MR 379595 | Zbl 0313.16028
,[2] Every countable reduced torsion-free ring is an endomorphism ring, Proc. London Math. Soc. 13 (1963) 687-710. | MR 153743 | Zbl 0116.02403
,[3] The homological dimension of an abelian group as a module over its ring of endomorphisms, Monatsh. Math. 69 (1965), 294-305; Monatsh. Math. 76 (1972), 109-111; Monatsh. Math. 80 (1975), 37-44. | MR 185002 | Zbl 0152.00602
and ,[4] Infinite Abelian Groups I, II. Academic Press (1970). | MR 255673 | Zbl 0257.20035
,[5] Rings and Homology. Holt, Rinehert and Winston (1964). | MR 163944 | Zbl 0141.02901
,[6] Fields and Rings, The University of Chicago Press (1972). | MR 349646 | Zbl 1001.16501
,[7] Homological dimension of abelian groups over their endomorphism rings, Proc. American Math. Soc. 54 (1976), 65-68. | MR 393279 | Zbl 0326.20049
and ,