Invariant differentials and L-functions. Reciprocity law for quadratic fields and elliptic curves over 𝐐
Honda, Taira
Rendiconti del Seminario Matematico della Università di Padova, Tome 50 (1973), p. 323-335 / Harvested from Numdam
Publié le : 1973-01-01
@article{RSMUP_1973__49__323_0,
     author = {Honda, Taira},
     title = {Invariant differentials and $L$-functions. Reciprocity law for quadratic fields and elliptic curves over $\mathbf {Q}$},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     volume = {50},
     year = {1973},
     pages = {323-335},
     mrnumber = {360593},
     zbl = {0283.14006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RSMUP_1973__49__323_0}
}
Honda, Taira. Invariant differentials and $L$-functions. Reciprocity law for quadratic fields and elliptic curves over $\mathbf {Q}$. Rendiconti del Seminario Matematico della Università di Padova, Tome 50 (1973) pp. 323-335. http://gdmltest.u-ga.fr/item/RSMUP_1973__49__323_0/

[1] F. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Leipzig and Berlin, 1922. | JFM 46.0599.02

[2] E. Hecke, Über Modulfunktionen und die Dirichletscher Reihen mit Eulerscher Produktentwickelung II, Math. Ann., 114 (1937), 316-351; Mathematische Werke, 672-707. | JFM 63.0339.03 | MR 1513142 | Zbl 0016.35503

[3] T. Honda, Formal groups and zeta-functions, Osaka J. Math., 5 (1958), 199-213. | MR 249438 | Zbl 0169.37601

[4] T. Honda, On the theory of commutative formal groups, J. Math. Soc. Japan, 22 (1970), 213-246. | MR 255551 | Zbl 0202.03101

[5] A.P. Ogg, Abelian curves of 2-power conductor, Proc. Camb. Phil. Soc., 62 (1966), 143-148. | MR 201436 | Zbl 0163.15403

[6] A. Weil, Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann., 168 (1967), 149-156. | MR 207658 | Zbl 0158.08601