@article{RSMUP_1967__38__331_0, author = {Schmidt, Roland}, title = {Verbandshomomorphismen endlicher Gruppen}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, volume = {39}, year = {1967}, pages = {331-357}, mrnumber = {222181}, zbl = {0157.35402}, language = {de}, url = {http://dml.mathdoc.fr/item/RSMUP_1967__38__331_0} }
Schmidt, Roland. Verbandshomomorphismen endlicher Gruppen. Rendiconti del Seminario Matematico della Università di Padova, Tome 39 (1967) pp. 331-357. http://gdmltest.u-ga.fr/item/RSMUP_1967__38__331_0/
[1] The significance of the system of subgroups for the structure of the group, Amer. Journal of Math., 61 (1939), 1-44. | JFM 65.0060.01
,[2] Theory of groups of finite order, New York, 1911.
,[3] Kriterien für Vertauschbarkeit von Untergruppen, (Staatsexamensarbeit, Frankfurt), 1960.
,[4] Einführung in die Verbandstheorie, Berlin-Göttingen-Heidelberg, 1955. | MR 67082 | Zbl 0064.02901
,[5] Lattice homomorphisms induced by group homomorphisms, Proc. Amer. Math. Soc., 2 (1951), 467-78. | MR 41138 | Zbl 0043.02303
,[6] Endomorphisms of lattices, Duke Math. Journal, 18 (1951), 331-42. | MR 41103 | Zbl 0043.03403
,[7] Über die Quasinormalteiler von endlichen Gruppen, Acta Sci. Math. Szeged, 23 (1962), 168-70. | MR 138676 | Zbl 0112.02106
und ,[8] Sylowgruppen und Subnormalteiler endlicher Gruppen, Math. Zeitschrift, 78 (1962), 205-21. | MR 147527 | Zbl 0102.26802
,[9] Contributions to the theory of groups of finite order, Duke Math. Journal, 5 (1939), 431-60. | JFM 65.0065.06 | MR 1546136
,[10] Structure of a group and the structure of its lattice of subgroups, Berlin-Göttingen-Heidelberg, 1956. | MR 83487 | Zbl 0070.25406
,[11] On the lattice of subgroups of finite groups, Trans. Amer. Math. Soc., 70 (1951), 345-71. | MR 39717 | Zbl 0043.02502
,[12] Sulla condizione perchè un omomorfismo ordinario sia anche un omomorfismo strutturale, Giornale di Mat. Battaglini (4), 78 (1949), 182-92. | MR 32638 | Zbl 0034.01402
,[13] The theory of groups, Göttingen, 1958. | MR 91275 | Zbl 0083.24517
,