@article{RSA_2005__53_1_39_0, author = {Ferr\'e, Louis and Villa, Nathalie}, title = {Discrimination de courbes par r\'egression inverse fonctionnelle}, journal = {Revue de Statistique Appliqu\'ee}, volume = {53}, year = {2005}, pages = {39-57}, language = {fr}, url = {http://dml.mathdoc.fr/item/RSA_2005__53_1_39_0} }
Ferré, Louis; Villa, Nathalie. Discrimination de courbes par régression inverse fonctionnelle. Revue de Statistique Appliquée, Tome 53 (2005) pp. 39-57. http://gdmltest.u-ga.fr/item/RSA_2005__53_1_39_0/
[1] Modelization, non-parametric estimation and prediction for continuous time processes. In : Roussas, G. (Ed. ), Nonparametric Functional estimation and related Topics, NATO, ASI Series, pp. 509-529. | MR 1154349 | Zbl 0737.62032
( 1991),[2] Discussion of Li (1991) J. Am. Statis. Ass., 86, 328-332.
( 1991),[3] Dimension reduction and visualization in discriminant analysis, Australian & New-Zealand Journal of Statistics, 43, 147-199. | MR 1839361 | Zbl 0992.62056
et ( 2001),[4] Un modèle semi-paramétrique pour variable aléatoire Hilbertienne. C.R. Acad. Sci. Paris, t.327, série I, 947-952. | MR 1873814 | Zbl 0996.62035
, and ( 2001),[5] Les analyses factorielles en calcul des probabilités et en statistique : essai d'étude synthétique. Thèse Toulouse III.
and ( 1976),[6] A probabilistic theory for pattern recognition, New-York : Springer-Verlag. | MR 1383093
, and ( 1996),[7] Biased discriminant analysis : evaluation of the optimum probability of classification, Comm. Statist. Theory Methods, 8, 1447-1458. | MR 547408 | Zbl 0414.62045
( 1979),[8] Curves Discrimination : a Non Parametric Approach. Computational and Statistical Data Analysis, 44, 161-173. | MR 2020144 | Zbl pre05373903
and ( 2003),[9] Multi-layer Neural Network with Functional Inputs, soumis à publication.
and ( 2005),[10] Functional Sliced Inverse Regression analysis. Statistics, 37, 475-488. | MR 2022235 | Zbl 1032.62052
and ( 2003),[11] Smoothed Functional Inverse Regression. À paraître dans Statistica Sinica. | MR 2233905 | Zbl 1086.62054
et ( 2005),[12] Regularized discriminant analysis, J. Amer. Statist. Assoc., 84, 165-175. | MR 999675
( 1989),[13] Kernel discriminant analysis, Research Studies Press/Wiley. | MR 666869 | Zbl 0562.62041
( 1982),[14] Flexible Discriminant Analysis by optimal scoring, J. Amer. Statist. Ass., 89, 1255-1270. | MR 1310220 | Zbl 0812.62067
, and ( 1994),[15] Penalized Discriminant Analysis, Ann. Statist., 23, p 73-102. | MR 1331657 | Zbl 0821.62031
, and ( 1995),[16] Dimension reduction in nonparametric discriminant analysis, Technical report.
et ( 2001),[ 17] Ridge regression :biased estimation for non orthogonal problems, Technometrics, 12-1, 55-67. | MR 370945 | Zbl 0202.17205
and ( 1970a),[18] Ridge regression : Application to non orthogonal problems, Technometrics, 12-2, 69-82. | Zbl 0202.17206
and ( 1970b),[19] Nearest Neighbor Inverse Regression, Ann. Statist., 697-731. | MR 1714711 | Zbl 0951.62034
( 1999),[20] Functional linear discriminant analysis for irregularly sampled curves, J.R. Statis. Soc., B, 64, 533-550. | MR 1858401 | Zbl 0989.62036
and ( 2001),[21] Canonical Correlation Analysis when the data are curves, J.R. Statis. Soc., B, 55,725-740. | MR 1223939 | Zbl 0803.62049
, and ( 1993),[22] Sliced Inverse Regression for dimension reduction, J. Amer. Statist. Ass., 86, 316-342. | MR 1137117 | Zbl 0742.62044
( 1991),[23] On principal Hessian directions for data visualisation and dimension reduction : another application of Stein's lemma, Ann. Statist., 87, 1025-1039. | MR 1209564 | Zbl 0765.62003
( 1992),[24] Dimension reduction for multivariate data, J. Amer. Statist. Ass., 98, 99-109. | MR 1965677 | Zbl 1047.62059
, , et ( 2003),[25] Functional Data Analysis, New-York : Springer Verlag. | MR 2168993 | Zbl 0882.62002
and ( 1997),