Trois méthodes non paramétriques pour l'estimation de courbes de référence - application à l'analyse de propriétés biophysiques de la peau
Gannoun, Ali ; Girard, Stéphane ; Guinot, Christiane ; Saracco, Jérôme
Revue de Statistique Appliquée, Tome 50 (2002), p. 65-89 / Harvested from Numdam
Publié le : 2002-01-01
@article{RSA_2002__50_1_65_0,
     author = {Gannoun, Ali and Girard, St\'ephane and Guinot, Christiane and Saracco, J\'er\^ome},
     title = {Trois m\'ethodes non param\'etriques pour l'estimation de courbes de r\'ef\'erence - application \`a l'analyse de propri\'et\'es biophysiques de la peau},
     journal = {Revue de Statistique Appliqu\'ee},
     volume = {50},
     year = {2002},
     pages = {65-89},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/RSA_2002__50_1_65_0}
}
Gannoun, Ali; Girard, Stéphane; Guinot, Christiane; Saracco, Jérôme. Trois méthodes non paramétriques pour l'estimation de courbes de référence - application à l'analyse de propriétés biophysiques de la peau. Revue de Statistique Appliquée, Tome 50 (2002) pp. 65-89. http://gdmltest.u-ga.fr/item/RSA_2002__50_1_65_0/

Basset, G. & Koenker, R. (1982). An empirical quantile function for linear models with iid errors. Journal of the American Statistical Association, 77, 407-415. | MR 664682 | Zbl 0493.62047

Berlinet, A., Gannoun, A. & Matzner-Løber, E. (2001). Asymptotic normality of convergent estimates of conditional quantiles. Statistics, 35, 139-169. | MR 1820681 | Zbl 0997.62037

Bhattacharya, P.K. & Gangopadhyay, A.K. (1990). Kernel and nearestneighbor estimation of a conditional quantile. The Annals of Statistics, 18, 1400-1415. | MR 1062716 | Zbl 0706.62040

Chardon, A., Cretois, I. & Hourseau, C. (1991). Skin colour typology and suntanning pathways. International Journal of Cosmetic Science, 13, 191-208.

Chaudhuri, P. (1991). Nonparametric estimates of regression quantiles and their local bahadur representation. The Annals of Statistics, 19, 760-777. | MR 1105843 | Zbl 0728.62042

Cole, T.J. (1988). Fitting smoothed centile curves to reference data. Journal of Royal Statistical Society, Series A, 151, 385-418.

Deheuvels, P. (1977). Estimation non paramétrique de la densité par histogramme généralisé. La Revue de Statistique Appliquée, 35, 5-42. | Numdam | MR 501555

Ducharme, G.R., Gannoun, A., Guertin, M.C. & Jéquier, J.C. (1995). Reference values obtained by kernel-based estimation of quantile regression. Biometrics, 51, 1105-1116. | Zbl 0875.62153

Fan, J. & Gijbels, I. (1992). Variable bandwidth and local linear regression smoothers. The Annals of Statistics, 20, 2008-2036. | MR 1193323 | Zbl 0765.62040

Fan, J., Hu, T.C., & Truong, Y.K. (1994). Robust nonparametric function estimation. Scandinavian Journal of Statistics, 21, 433-446. | MR 1310087 | Zbl 0810.62038

Gannoun, A. (1990). Estimation non paramétrique de la médiane conditionnelle : médianogramme et méthode du noyau. Annales de l'I.S.U.P., XXXXV, 11-22.

Goldstein, H. & Pan, H. (1992). Percentile smoothing using piecewise polynomials, with covariates. Biometrics, 48, 1057-1068. | MR 1212857

Härdle, W. (1990). Applied nonparametric regression, Cambridge University Press, Cambridge. | MR 1161622 | Zbl 0875.62159

Healy, M.J.R., Rasbash, J., & Yang, M. (1988). Distribution-free estimation of age-related Centiles. Annals of Human Biology, 15, 17-22.

Hendricks, W. & Koenker, R. (1992). Hierarchical spline models for conditional quantiles and the demand for electricity. Journal of the American Statistical Association, 99, 58-68.

Horn, P.S., Pesce, A.J., & Copeland, B.E. (1998). A robust approach to reference interval estimation and evoluation. Clinical Chemistry, 44, 622-631.

Jones, M.C. & Hall, P. (1990). Mean squared error properties of kernel estimates of regression quantiles. Statistic and Probability Letters, 10, 283-289. | MR 1069903 | Zbl 0716.62041

Koenker, R., Portnoy, S., & Ng, P. (1992). Nonparametric estimation of conditional quantile functions. L1- statistical analysis and related methods, ed Y. Dodge, Elsevier: Amsterdam, 217-229. | MR 1214834

Magee, L., Burbidge, J.B., & Robb, A.L. (1991). Computing kernel-smoothed Conditional Quantiles from Many Observations. Journal of the American Statistical Association, 86, 673-677. | MR 1147091

Mint El Mouvit, L. (2000). Sur l'estimateur linéaire local de la fonction de répartition conditionnelle. Thèse de doctorat, Université Montpellier 2.

Poiraud-Casanova, S. & Thomas-Agnan, C. (1998). Quantiles conditionnels. Journal de la Société Française de Statistique, 139(4), 31-44.

Poiraud-Casanova, S. (2000). Estimation non paramétrique des quantiles conditionnels. Thèse de doctorat, Université Toulouse 1.

Roussas, G.R. (1991). Estimation of transition distribution function and its quantiles in Markov processes : strong consistency and asymptotic normality. Nonparametric Functional Estimation and Related Topics, Kluwer Academic Publishers: Netherlands, 443-462. | MR 1154345 | Zbl 0735.62081

Royston, P. (1991). Constructing time-specific reference ranges. Statistics in Medicine, 10, 675-690.

Royston, P. & Altman, D.G. (1992). Regression using fractional polynomials of continuous covariates : parsimonious parametric modelling (with discussion. Applied Statistics, 43, 429-467.

Royston, P. & Wright, E.M. (1998). How to construct normal ranges for fetal variables. Utrasound Obstet Gynecol, 11, 30-38.

Samanta, T. (1989). Non-parametric estimation of conditional quantiles. Statistic and Probability Letters, 7, 407-412. | MR 1001144 | Zbl 0678.62049

Stone, C.J. (1977). Consistent nonparametric regression (with discussion. The Annals of Statistics, 5, 595-645. | MR 443204 | Zbl 0366.62051

Stute, W. (1986). Conditional empirical processes. The Annals of Statistics, 14, 638-647. | MR 840519 | Zbl 0594.62038

Tango, T. (1998). Estimation of age-specific reference ranges via smoother AVAS. Statistics in Medicine, 17, 1231-1243.

Wright, E.M. & Royston, P. (1997). A Comparaison of Statistical Methods for Age-Related Reference Intervals. J. R. Statist. Soc. Series A, 160, 47-69.

Yao, Q. (1999). Conditional predictive regions for stochastic processes. Technical report, University of Kent at Canterbury, UK.

Yu, K. (1997). Smooth regression quantile estimation. Ph.D. thesis, The open University, UK.

Yu, K. & Jones, M.C. (1998). Local linear quantile regression. Journal of the American Statistical Association, 93, 228-237. | MR 1614628 | Zbl 0906.62038