Analyse bayésienne du modèle Logit : algorithme par tranches ou Metropolis-Hastings ?
Altaleb, Anas ; Robert, Christian P.
Revue de Statistique Appliquée, Tome 49 (2001), p. 53-70 / Harvested from Numdam
Publié le : 2001-01-01
@article{RSA_2001__49_4_53_0,
     author = {Altaleb, Anas and Robert, Christian P.},
     title = {Analyse bay\'esienne du mod\`ele Logit : algorithme par tranches ou Metropolis-Hastings ?},
     journal = {Revue de Statistique Appliqu\'ee},
     volume = {49},
     year = {2001},
     pages = {53-70},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/RSA_2001__49_4_53_0}
}
Altaleb, Anas; Robert, Christian P. Analyse bayésienne du modèle Logit : algorithme par tranches ou Metropolis-Hastings ?. Revue de Statistique Appliquée, Tome 49 (2001) pp. 53-70. http://gdmltest.u-ga.fr/item/RSA_2001__49_4_53_0/

Besag, J. et Green, P.J. (1993) Spatial Statistics and Bayesian computation (avec discussion). Journal of the Royal Statistical Society (Series B) 55, 25-38. | MR 1210422 | Zbl 0800.62572

Best, N.G., Cowles, M.K. et Vines, K. (1995) CODA : Convergence diagnosis and output analysis software for Gibbs sampling output, Version 0.30. Tech. Report, MRC Biostatistics Unit, Univ. of Cambridge.

Brooks S.P. et Roberts, G. (1998) Assessing convergence of Markov chain Monte Carlo algorithms. Statistics and Computing 8, 319-335.

Carlin, B.P. et Chib, S. (1995) Bayesian model choice through Markov-Chain Monte Carlo. Journal of the Royal Statistical Society (Series B), 57, 473-484. | Zbl 0827.62027

Cowles, M.K. et Carlin, B.P. (1996) Markov Chain Monte Carlo convergence diagnostics : a comparative study. Journal of the American Statistical Association 91, 883-904. | MR 1395755 | Zbl 0869.62066

Damien, P. et Walker, S. (1996) Sampling probability densities via uniform random variables and a Gibbs sampler. Tech. Report, Business School, University of Michigan.

Damien, P., Wakefield, J. et Walker, S. (1999) Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables. Journal of the Royal Statistical Society (Series B) 61, 331-344. | MR 1680334 | Zbl 0913.62028

Gelman, A., Gilks, W.R. and Roberts, G.O. (1996) Efficient Metropolis jumping rules. In Bayesian Statistics 5, J.O. Berger, J.M. Bernardo, A.P. Dawid, D.V. Lindley and A.F.M. Smith (Eds.). 599-608. Oxford University Press, Oxford. | MR 1425429

Geweke, J. (1992) Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments (with discussion. In Bayesian Statistics 4, J.M. Bernardo, J.O. Berger, A.P. Dawid and A.F.M. Smith (Eds.). 169-193. Oxford University Press, Oxford. | MR 1380276

Gilks, W.R. et Roberts, G.O. (1996) Strategies for improving MCMC. In Markov Chain Monte Carlo in Pratice, W.R. Gilks, S. Richardson and D.J. Spiegelhalter (Eds.), 89-114. Chapman and Hall, London. | MR 1397966 | Zbl 0844.62100

Hammersley, J.M. et Hancomb, D.C. (1964) Monte Carlo Methods, J. Wiley, New York. | Zbl 0121.35503

Hastings, W.K. (1970) Monte Carlo sampling methods using Markov chains and their application. Biometrika 57, 97-109. | Zbl 0219.65008

Mengersen, K.L., Robert, C.P. et Guihenneuc-Jouyaux, C. (1999) MCMC convergence diagnostics : a « reviewww» (avec discussion. In Bayesian Statistics 6. J.O. Berger, J.M. Bernardo, A.P. Dawid, D.V. Lindley and A.F.M. Smith (Eds.). Oxford University Press, Oxford, 415- 441. | MR 1723507 | Zbl 0957.62019

Raftery, A.E. et Lewis, S. (1992) How many iterations in the Gibbs sampler? In Bayesian Statistics 4, J.O. Berger, J.M. Bernardo, A.P. Dawid and A.F.M. Smith (Eds.), 763- 773. Oxford University Press, Oxford.

Robert, C.P. (1992) L'Analyse Statistique Bayésienne. Economica, Paris. | Zbl 0827.62006

Robert, C.P. (1996) Méthodes de Monte-Carlo par Chaînes de Markov. Economica, Paris. | MR 1419096 | Zbl 0917.60007

Smith, A.F.M. et Roberts, G.O. (1993) Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods (avec discussion. Journal of the Royal Statistical Society (Series B) 55, 3-24. | MR 1210421 | Zbl 0779.62030