@article{RSA_1995__43_2_77_0, author = {Cans, C. and Lavergne, C.}, title = {De la r\'egression logistique vers un mod\`ele additif g\'en\'eralis\'e : un exemple d'application}, journal = {Revue de Statistique Appliqu\'ee}, volume = {43}, year = {1995}, pages = {77-90}, language = {fr}, url = {http://dml.mathdoc.fr/item/RSA_1995__43_2_77_0} }
Cans, C.; Lavergne, C. De la régression logistique vers un modèle additif généralisé : un exemple d'application. Revue de Statistique Appliquée, Tome 43 (1995) pp. 77-90. http://gdmltest.u-ga.fr/item/RSA_1995__43_2_77_0/
[1] Régression non linéaire et applications. Economica, Paris.
, et (1992)[2] Bootstrap and Asymptotic prediction criterion estimate for binomial proportions in insemination data. Biometrical Journal 34 -1, p. 69-79
et (1992)[3] Estimating optimal transformations for multiple regression and correlation (with discussion. J. Am. Statist. Assoc. 80, p. 580-619. | MR 803258 | Zbl 0594.62044
and (1985)[4] Bootstrap and cross validation estimates of the prediction error for linear regression models. Ann. Statistics 13, p. 1400-1424. | MR 760696 | Zbl 0557.62039
and (1984)[5] Human reciprocal translocations : is the unbalanced mode at birth predictable? Human Genetic 91, p. 228-232.
, et coll. (1993)[6] Logistic regression model to estimate the risk of viable unbalanced offspring in reciprocal translocations. Human Genetic 92, p. 598-604.
et coll. (1993)[7] Application of G.A.M. in modelisation adverse outcome in reciprocal translocations. Soumis à Genetic Epidemiology.
et coll. (1994)[8] Statistical models in S. Chapman & Hall, New York.
and (1991)[9] Human reciprocal translocations : a new computer system for genetic counseling. Ann. Génét. 35, p. 193-201.
et coll. (1992)[10] Viability thresholds for partial trisomies and monosomies. A study of 1159 viable unbalanced translocations. Human Genetic 93, p. 188-194.
et coll. (1994)[11] Frequency of selecting noise variable in subset regression analysis : a similation study. Am Statistician 41, p. 84-86.
and (1987)[12] Modeling and variable selection in epidemiologic analysis. Am. J. Public Health 79, p. 340-349.
(1989)[13] Generalized additive models (with discussion Statist. Sci. 1, p. 297-318. | MR 858512 | Zbl 0955.62603
and (1986)[14] Generalized additive models. Chapman & Hall, New York. | MR 1082147 | Zbl 0747.62061
and (1990)[15] Applied logistic regression. John Wiley & sons, New York. | Zbl 0967.62045
and (1989)[16] Outliers and residual distributions in logistic regression. J. Am. Statist. Assoc. 81, p. 987-990. | MR 867621 | Zbl 0658.62079
, (1986)[17] Graphical methods for assessing logistic regression models. J. Am. Statist. Assoc. 79, p. 61-71. | Zbl 0531.65080
, and (1984)[18] Generalized linear models. Chapman & Hall, London. | Zbl 0744.62098
and (1989)[19] Logistic Regression Diagnostics. Ann. Statistics 9, p. 705-724. | MR 619277 | Zbl 0478.62053
, (1981)[20] Graphical Models in Applied Multivariate Statistics. John Wiley & sons, New York. | MR 1112133 | Zbl 0732.62056
(1989)