@article{RSA_1991__39_3_5_0,
author = {Bosq, Denis and Smili, D.},
title = {Comparaison des m\'ethodes de simulation d'un bruit blanc gaussien},
journal = {Revue de Statistique Appliqu\'ee},
volume = {39},
year = {1991},
pages = {5-15},
mrnumber = {1145956},
zbl = {0972.65501},
language = {fr},
url = {http://dml.mathdoc.fr/item/RSA_1991__39_3_5_0}
}
Bosq, D.; Smili, D. Comparaison des méthodes de simulation d'un bruit blanc gaussien. Revue de Statistique Appliquée, Tome 39 (1991) pp. 5-15. http://gdmltest.u-ga.fr/item/RSA_1991__39_3_5_0/
(1) (1981) : Alternatives to Hastings'approximation to the inverse of the normal cumulative distribution function. Appl.Statist., 30, N°. 3, pp. 275-276. | MR 642779
(2) et P (1987) : théorie de l'estimation fonctionnelle. Ed Economica.
(3) and (1958) : A note on the generation of random normal deviates. Ann.Math. Statist., 29, pp. 610- 611. | Zbl 0085.13720
(4) and (1976) : The Box-Muller method for generating pseudo-random normal deviates. Appl. Statist., 25, N°.1, pp. 12-20. | MR 428682
(5) (1955) : Approximation for digital computers. Princeton University Press. | MR 68915 | Zbl 0066.10704
(6) (1978) : Approximating the cumulative normal distribution and its inverse. Appl. Statist.,27, N°.1., pp.76-77.
(7) (1951) : Mathematical methods in large scale digital computing units. Proceedings of second symposium on large scale digital calculating machinery. Ann. Comput. Lab. Harvard University, V.26, pp. 141-146. | MR 44899 | Zbl 0045.40001
(8) (1973) : On using the Box-Muller transformation with multiplicative congruential pseudo-random number generators. Appl. Statist., 22, pp. 92-97.
(9) (1978) : Approximation to the cumulative normal function and its inverse for use on a pocket calculator. Appl. Statist., V.26, N°.1, pp. 75-76.
(10) (1990) : Contribution à l'étude probabiliste des générateurs d'échantillons de séries temporelles. Thèse de l'Université Paris 6.
(11) and (1966) : Probability functions. In handbook of mathematical functions (M. Abramowitz and I. A. Stegun, eds). Washington. D.C. : Department of commerce of U.S. Government.