De l'analyse à régression multiple
Hamaker, H. C.
Revue de Statistique Appliquée, Tome 10 (1962), p. 23-48 / Harvested from Numdam
Publié le : 1962-01-01
@article{RSA_1962__10_1_23_0,
     author = {Hamaker, H. C.},
     title = {De l'analyse \`a r\'egression multiple},
     journal = {Revue de Statistique Appliqu\'ee},
     volume = {10},
     year = {1962},
     pages = {23-48},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/RSA_1962__10_1_23_0}
}
Hamaker, H. C. De l'analyse à régression multiple. Revue de Statistique Appliquée, Tome 10 (1962) pp. 23-48. http://gdmltest.u-ga.fr/item/RSA_1962__10_1_23_0/

[1] - Anderson, H.E. and Fruchter, B. (1960) - Some multiple correlation and predictor selection methods. Psychometrika (1960) 25, 59 -76, refs. | MR 112219 | Zbl 0094.33403

[2] - Bartoo, J.D. and Laird, D. (1958) - A program for applying the principle of parsimony in multiple regression. Paper presented to the Association of Computing Machinery at Urbana, III. 1958.

[3] - Canning, F.L. (1959) - Estimating load requirements in a job shop. J. Ind. Eng. (1959) 10, 447- 479.

[4] - De Baun, R.M. and Schneider, M. (1957) - Some examples of multivariate analysis. Transaction of the Middle Atlantic Conference of the A.S.Q.C (1957), 19- 25.

[5] - Dubois, P.H. (1956) - Multivariate correlational analysis.- Harper, New-York, 1956. | MR 91575 | Zbl 0086.13003

[6] - Duncan and Kenney - On the solution of normal equations and related topics. Edwards Brothers, Ann. Arbor (1948).

[7] - Dwyer, P.S. (1945) - The square root method and its use in correlation and regression J.A.S.A. (1945) 40, 493-503. | MR 14832 | Zbl 0061.39201

[ 8 ] - Effroymson, M.A. (1955) - Stepwise procedure for calculation of multiple regression. Paper delivered at the Gordon Research Conference on Statistics in 1955.

[9] - Hader, R.J. and Grandage, A.H.E. (1956) - Simple and multiple regression analysis in "Experimental designs in industry", Proceedings of a symposium held in 1956, edited by V. Chew and published by Wiley and Sons, New York, 1958.

[10] - Hald, A. (1952) - Statistical theory with engineering applications, pages 647 - 650. Wiley and Sons, New York, 1952. | MR 49514 | Zbl 0048.36404

[11] - Horst, P. (1934) - Item analysis by the method of successive residuals. Jl. of Experimental Education (1934), 2, 254-263.

[12] - Kramer, C.Y. (1957) - Simplified computations for multiple regression. Industrial Quality Control (1957) 13, Nr. 8, 8-11.

[13] - Layton, W.L. (1951) - The relationship between the method of successive résiduals and the method of exhaustion - Psychometrika (1951) 16, 51-56.

[14] - Leech, F.B. and Healy, M.J.R. (1959) - The analysis of experiments on growth rates. Biometrics (1959) 15, 98 -106. | Zbl 0084.15505

[15] - Moriceau, J. (1954) - Une méthode statistique d'évaluation des temps opérationnels. Revue de Statistique Appliquée (1954) 2, n° 3, 57-74. | Numdam

[16] - Peach - The abbreviated Doolittle method for matrix inversion. Institute of Statistics, Mimeo series 28, Raleigh N.C.

[17] - Sibuya, M. and Haga, T. (1959) - Orthogonal polynomials without constant term. Annals of the Institute of Statistical Mathematics, Tokyo (1959), 10, 209-222. | MR 105775 | Zbl 0094.14402

[18] - Summerfield, A. and Lubin (1951) - A square root method of selecting a minimum set of variables in multiple regression. I - The method, Psychometrika (1951) 16, 271-283. II - A worked exemplae, Psychometrika (1951) 16, 425-437.

[19] - Wishart, J. and Metakides, Th. (1953) - Orthogonal polynomial fitting, Biometrika (1953) 40, 361-369. | MR 59062 | Zbl 0052.35603