Let be a continuous map of the closure of the open unit disc of into a unital associative Banach algebra , whose restriction to is holomorphic, and which satisfies the condition whereby for all and whenever (where is the spectrum of any ). One of the basic results of the present paper is that is , that is to say, is then a compact subset of that does not depend on for all . This fact will be applied to holomorphic self-maps of the open unit ball of some -algebra and in particular of any unital -algebra, investigating some cases in which not only the spectra but the maps themselves are necessarily constant.
@article{RLIN_2005_9_16_4_215_0, author = {Edoardo Vesentini}, title = {On a class of inner maps}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {16}, year = {2005}, pages = {215-226}, zbl = {1215.46030}, mrnumber = {2255005}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2005_9_16_4_215_0} }
Vesentini, Edoardo. On a class of inner maps. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 16 (2005) pp. 215-226. http://gdmltest.u-ga.fr/item/RLIN_2005_9_16_4_215_0/
[1] 735, Springer-Verlag, Berlin-Heidelberg-New York, 1979. | MR 549769 | Zbl 0409.46054
, Propriétés spectrales des algèbres de Banach. Lecture Notes in Mathematics,[2] | MR 563329 | Zbl 0447.46040
- , Holomorphic maps and invariant distances. North Holland, Amsterdam-New York-Oxford, 1980.[3] Bounded symmetric homogeneous domains in infinite dimensional spaces. In: - (eds.), Proceedings on infinite dimensional holomorphy, University of Kentucky 1973. Lecture Notes in Mathematics, 364, Springer, Berlin 1974, 13-40. | MR 407330 | Zbl 0293.46049
,[4] | MR 133008 | Zbl 0117.34001
, Banach spaces of analytic functions. Prentice-Hall, Englewood Cliffs, N.J., 1962.[5] | MR 1242120 | Zbl 0789.32001
- , Invariant distances and metrics in complex analysis. Walter de Gruyter, Berlin-New York 1993.[6] Note sur les familles de fonctions analytiques multiformes etc. J. Sci. Hiroshima Univ. Ser. A, 4, 1934, 93-98. | Zbl 0011.31403
,[7] | MR 601594 | Zbl 1139.32001
, Function theory in the unit ball of . Springer-Verlag, New York-Heidelberg-Berlin1980.[8] New constructions of functions holomorphic in the unit ball . Conference Board Math. Sci., 63, 1985. | MR 840468 | Zbl 1187.32001
,[9] | MR 442701 | Zbl 1024.46001
, -algebras and -algebras. Springer-Verlag, New York-Heidelberg-Berlin1971.[10] Analytic set-valued functions and spectra. Math. Ann., 256, 1981, 363-386. | MR 626955 | Zbl 0452.46028
,[11] Maximum theorems for spectra. Essays on topology and related topics, Mémoires dédiés à Georges de Rham, Springer-Verlag, Berlin-Heidelberg-New York1970, 111-117. | MR 271731 | Zbl 0195.41903
,[12] Maximum theorems for vector valued holomorphic functions. University of Maryland Technical Report, 69-132, 1969; Rend. Sem. Mat. Fis. Milano, 40, 1970, 1-34. | MR 287299 | Zbl 0221.58007
,[13] Complex geodesies. Compositio Math., 44, 1981, 375-394. | MR 662466 | Zbl 0488.30015
,[14] Holomorphic isometries of spin-factors. Rend. Sem. Mat. Univ. Politec. Torino, 50, 4, 1992, 427-455. | MR 1261453 | Zbl 0791.46031
,