In this preliminary Note we outline some results of the forthcoming paper [11], concerning positive solutions of the equation . A parabolic Harnack inequality is proved, which in particular implies a sharp two-sided estimate for the associated heat kernel. Our approach relies on the unitary equivalence of the Schrödinger operator with the opposite of the weighted Laplacian when .
In questa Nota preliminare si presentano alcuni risultati del successivo lavoro [11], riguardanti soluzioni positive dell'equazione . Si dimostra una disuguaglianza di Harnack parabolica, che in particolare implica una stima bilatera sul nucleo del calore associato. Il nostro approccio si basa sull'equivalenza unitaria dell'operatore di Schrödinger con l'opposto dell'operatore di Laplace pesato quando .
@article{RLIN_2005_9_16_3_171_0, author = {Luisa Moschini and Alberto Tesei}, title = {Harnack inequality and heat kernel estimates for the Schr\"odinger operator with Hardy potential}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {16}, year = {2005}, pages = {171-180}, zbl = {1225.35112}, mrnumber = {2227741}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2005_9_16_3_171_0} }
Moschini, Luisa; Tesei, Alberto. Harnack inequality and heat kernel estimates for the Schrödinger operator with Hardy potential. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 16 (2005) pp. 171-180. http://gdmltest.u-ga.fr/item/RLIN_2005_9_16_3_171_0/
[1] Critical heat kernel estimates for Schrödinger operators via Hardy-Sobolev inequalities. J. Funct. Anal., 208, 2004, 1-30. | MR 2034290 | Zbl 1058.35049
- - ,[2] On a semilinear elliptic equation with inverse-square potential. Selecta Math., 11, 2005, 1-7. | MR 2179651 | Zbl 1161.35383
- - ,[3] A remark on a Harnack inequality for degenerate parabolic equations. Rend. Sem. Mat. Univ. Padova, 73, 1985, 179-190. | MR 799906 | Zbl 0588.35013
- ,[4] 92, Cambridge University Press, 1989. | MR 990239 | Zbl 0699.35006
, Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics,[5] A new proof of Moser's parabolic Harnack inequality via the old ideas of Nash. Arch. Rat. Mech. Anal., 96, 1986, 327-338. | MR 855753 | Zbl 0652.35052
- ,[6] The heat equation on non-compact Riemannian manifolds. Mat. Sb., 182, 1991, 55-87 (in Russian); Engl. transl.: Math. USSR Sb., 72, 1992, 47-77. | MR 1098839
,[7] Heat kernels on weighted manifolds and applications. Cont. Math., to appear; http:// www.ma.ic.ac.uk/~grigor/wma.pdf | MR 2218016 | Zbl 1106.58016
,[8] Stability results for Harnack inequalities. Ann. Inst. Fourier (Grenoble), 55, 2005, to appear; http://www.ma.ic.ac.uk/~grigor/vc1eps.pdf | MR 2149405 | Zbl 1115.58024
- ,[9] Heat kernel bounds and desingularizing weights. J. Funct. Anal., 202, 2003, 1-24. | MR 1994762 | Zbl 1036.35044
- ,[10] Global heat kernel bounds via desingularizing weights. J. Funct. Anal., 212, 2004, 373-398. | MR 2064932 | Zbl 1057.47043
- ,[11] Parabolic Harnack Inequality for the Heat Equation with Inverse-Square Potential. Forum Math., to appear. | MR 2328115 | Zbl 1145.35051
- ,[12] A note on Poincaré, Sobolev and Harnack inequalities. Int. Math. Res. Notes, 2, 1992, 27-38. | MR 1150597 | Zbl 0769.58054
,[13] Parabolic Harnack inequality for divergence form second order differential operators. Potential Anal., 4, 1995, 429-467. | MR 1354894 | Zbl 0840.31006
,[14] 289, Cambridge University Press, 2002. | MR 1872526 | Zbl 0991.35002
, Aspects of Sobolev-Type Inequalities. London Math. Soc. Lecture Notes,