Harnack inequality and heat kernel estimates for the Schrödinger operator with Hardy potential
Moschini, Luisa ; Tesei, Alberto
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 16 (2005), p. 171-180 / Harvested from Biblioteca Digitale Italiana di Matematica

In this preliminary Note we outline some results of the forthcoming paper [11], concerning positive solutions of the equation tu=u+cx2u(0<c<n-224;n3). A parabolic Harnack inequality is proved, which in particular implies a sharp two-sided estimate for the associated heat kernel. Our approach relies on the unitary equivalence of the Schrödinger operator Hu=-u-cx2u with the opposite of the weighted Laplacian λv=1xλdivxλv when λ=2-n+2c0-c.

In questa Nota preliminare si presentano alcuni risultati del successivo lavoro [11], riguardanti soluzioni positive dell'equazione tu=u+cx2u(0<c<n-224;n3). Si dimostra una disuguaglianza di Harnack parabolica, che in particolare implica una stima bilatera sul nucleo del calore associato. Il nostro approccio si basa sull'equivalenza unitaria dell'operatore di Schrödinger Hu=-u-cx2u con l'opposto dell'operatore di Laplace pesato λv=1xλdivxλv quando λ=2-n+2c0-c.

Publié le : 2005-09-01
@article{RLIN_2005_9_16_3_171_0,
     author = {Luisa Moschini and Alberto Tesei},
     title = {Harnack inequality and heat kernel estimates for the Schr\"odinger operator with Hardy potential},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {16},
     year = {2005},
     pages = {171-180},
     zbl = {1225.35112},
     mrnumber = {2227741},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_2005_9_16_3_171_0}
}
Moschini, Luisa; Tesei, Alberto. Harnack inequality and heat kernel estimates for the Schrödinger operator with Hardy potential. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 16 (2005) pp. 171-180. http://gdmltest.u-ga.fr/item/RLIN_2005_9_16_3_171_0/

[1] Barbatis, G. - Filippas, S. - Tertikas, A., Critical heat kernel estimates for Schrödinger operators via Hardy-Sobolev inequalities. J. Funct. Anal., 208, 2004, 1-30. | MR 2034290 | Zbl 1058.35049

[2] Brezis, H. - Dupaigne, L. - Tesei, A., On a semilinear elliptic equation with inverse-square potential. Selecta Math., 11, 2005, 1-7. | MR 2179651 | Zbl 1161.35383

[3] Chiarenza, F.M. - Serapioni, R.P., A remark on a Harnack inequality for degenerate parabolic equations. Rend. Sem. Mat. Univ. Padova, 73, 1985, 179-190. | MR 799906 | Zbl 0588.35013

[4] Davies, E.B., Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics, 92, Cambridge University Press, 1989. | MR 990239 | Zbl 0699.35006

[5] Fabes, E.D. - Stroock, D.W., A new proof of Moser's parabolic Harnack inequality via the old ideas of Nash. Arch. Rat. Mech. Anal., 96, 1986, 327-338. | MR 855753 | Zbl 0652.35052

[6] Grigoryan, A., The heat equation on non-compact Riemannian manifolds. Mat. Sb., 182, 1991, 55-87 (in Russian); Engl. transl.: Math. USSR Sb., 72, 1992, 47-77. | MR 1098839

[7] Grigoryan, A., Heat kernels on weighted manifolds and applications. Cont. Math., to appear; http:// www.ma.ic.ac.uk/~grigor/wma.pdf | MR 2218016 | Zbl 1106.58016

[8] Grigoryan, A. - Saloff-Coste, L., Stability results for Harnack inequalities. Ann. Inst. Fourier (Grenoble), 55, 2005, to appear; http://www.ma.ic.ac.uk/~grigor/vc1eps.pdf | MR 2149405 | Zbl 1115.58024

[9] Milman, P.D. - Semenov, Y.A., Heat kernel bounds and desingularizing weights. J. Funct. Anal., 202, 2003, 1-24. | MR 1994762 | Zbl 1036.35044

[10] Milman, P.D. - Semenov, Y.A., Global heat kernel bounds via desingularizing weights. J. Funct. Anal., 212, 2004, 373-398. | MR 2064932 | Zbl 1057.47043

[11] Moschini, L. - Tesei, A., Parabolic Harnack Inequality for the Heat Equation with Inverse-Square Potential. Forum Math., to appear. | MR 2328115 | Zbl 1145.35051

[12] Saloff-Coste, L., A note on Poincaré, Sobolev and Harnack inequalities. Int. Math. Res. Notes, 2, 1992, 27-38. | MR 1150597 | Zbl 0769.58054

[13] Saloff-Coste, L., Parabolic Harnack inequality for divergence form second order differential operators. Potential Anal., 4, 1995, 429-467. | MR 1354894 | Zbl 0840.31006

[14] Saloff-Coste, L., Aspects of Sobolev-Type Inequalities. London Math. Soc. Lecture Notes, 289, Cambridge University Press, 2002. | MR 1872526 | Zbl 0991.35002