A theorem due to A. Gleason, J.-P. Kahane and W. Zelazko characterizes continuous characters within the space of all continuous linear forms of a locally multiplicatively convex, sequentially complete algebra. The present paper applies these results to investigate linear isometries of Banach algebras (with particular attention to normal uniform algebras) and of some locally multiplicatively convex algebras. The locally multiplicatively convex algebra of all holomorphic functions on a domain, will be investigated at the end of the paper.
Un teorema dovuto a A. Gleason, J.-P. Kahane e W. Zelazko determina i caratteri continui nello spazio di tutte le forme lineari continue di un'algebra moltiplicativamente localmente convessa e sequenzialmente completa. Nel presente lavoro si applicano questi risultati allo studio delle isometrie lineari di algebre di Banach (con particolare attenzione alle algebre normali uniformi) e di algebre localmente moltiplicativamente convesse. Si studia infine l'algebra localmente moltiplicativamente convessa delle funzioni olomorfe su un dominio.
@article{RLIN_2005_9_16_2_87_0, author = {Edoardo Vesentini}, title = {The Gleason-Kahane-Zelazko theorem and function algebras}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {16}, year = {2005}, pages = {87-108}, zbl = {1225.46040}, mrnumber = {2227745}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2005_9_16_2_87_0} }
Vesentini, Edoardo. The Gleason-Kahane-Zelazko theorem and function algebras. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 16 (2005) pp. 87-108. http://gdmltest.u-ga.fr/item/RLIN_2005_9_16_2_87_0/
[1] Isometries on Banach spaces: function spaces. Chapman and Hall/CRC Press, Boca Raton, Florida, 2002, 208 pp. | MR 1957004 | Zbl 1139.46001
- ,[2] A characterization of maximal ideals. J. Analyse Math., 19, 1967, 171-172. | MR 213878 | Zbl 0148.37502
,[3] | MR 133008 | Zbl 0117.34001
, Banach spaces of analytic functions. Prentice-Hall Series in Modern Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1962, 217 pp.[4] Continuous mappings induced by isometries of spaces of continuous functions. Studia Math., 26, 1966, 133-136. | MR 193491 | Zbl 0156.36903
,[5] | MR 203075 | Zbl 0138.06203
, An introduction to complex analysis in several variables. Van Nostrand, Princeton, N.J., 1966, 208 pp.[6] A characterization of maximal ideals in commutative Banach algebras. Studia Math., 29, 1968, 339-343. | MR 226408 | Zbl 0155.45803
- ,[7] The spectrum of automorphisms of Banach algebras. J. Functional Analysis, 4, 1949, 268-276. | MR 250075 | Zbl 0182.17703
- ,[8] Sur les fonctionnelles analytiques et la transformation de Fourier-Borel. J. Analyse Math., 9, 1963, 1-164. | MR 159220 | Zbl 0124.31804
,[9] Locally multiplicatively-convex topological algebras. Mem. Amer. Math. Soc., 11, 1952, 82 pp. | MR 51444 | Zbl 0047.35502
,[10] Isomorphisms between commutative Banach algebras with an application to rings of analytic functions. Kodai Math. Sem. Rep., 11, 1959, 182-188. | MR 121645 | Zbl 0166.40002
,[11] | MR 115101 | Zbl 0095.09702
, General theory of Banach algebras. Van Nostrand, Princeton, N.J., 1960.[12] | MR 365062 | Zbl 0867.46001
, Functional analysis. McGraw Hill, New York1973.[13] Automorphisms of commutative Banach algebras. In: (ed.), Problems in analysis. A symposium in honor of Salomon Bochner. Princeton University Press, Princeton, N.J., 1970, 319-323. | MR 352989 | Zbl 0214.13802
,[14] On the Banach-Stone Theorem. Advances in Math., 112, 1995, 135-146. | MR 1321671 | Zbl 0854.46025
,[15] Weighted composition operators and the Gleason-Kahane-Zelazko theorem. Advances in Math., 191, 2005, 423-445. | MR 2103220 | Zbl 1068.46029
,[16] | MR 1736550 | Zbl 0949.47032
, Introduction to continuous semigroups. Scuola Normale Superiore, Pisa2002.[17] A characterization of multiplicative linear functionals in complex Banach algebras. Studia Math., 29, 1968, 339-343. | MR 229042 | Zbl 0155.45803
,