On the uniqueness and simplicity of the principal eigenvalue
Lucia, Marcello
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 16 (2005), p. 133-142 / Harvested from Biblioteca Digitale Italiana di Matematica

Given an open set Ω of RNN>2, bounded or unbounded, and a function wLN2Ω with w+0 but allowed to change sign, we give a short proof that the positive principal eigenvalue of the problem -u=λwxu,uD01,2Ω is unique and simple. We apply this result to study unbounded Palais-Smale sequences as well as to give a priori estimates on the set of critical points of functionals of the type Iu=12Ωu2dx-ΩGx,udx,uD01,2Ω, when G has a subquadratic growth at infinity.

Dato un aperto connesso Ω di RNN>2, limitato o illimitato, e una funzione wLN2Ω con w+0 cui è consentito cambiare segno, si dimostra che l'autovalore principale positivo del problema -u=λwxu,uD01,2Ω è unico e semplice. Tale risultato viene applicato allo studio delle successioni di Palais-Smale illimitate ed utilizzato per costruire stime a priori sull'insieme dei punti critici di funzionali del tipo Iu=12Ωu2dx-ΩGx,udx,uD01,2Ω, dove G ha un andamento subquadratico all'infinito.

Publié le : 2005-06-01
@article{RLIN_2005_9_16_2_133_0,
     author = {Marcello Lucia},
     title = {On the uniqueness and simplicity of the principal eigenvalue},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {16},
     year = {2005},
     pages = {133-142},
     zbl = {1225.35159},
     mrnumber = {2225507},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_2005_9_16_2_133_0}
}
Lucia, Marcello. On the uniqueness and simplicity of the principal eigenvalue. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 16 (2005) pp. 133-142. http://gdmltest.u-ga.fr/item/RLIN_2005_9_16_2_133_0/

[1] Allegretto, W., Principal eigenvalues for indefinite-weight elliptic problems on RN. Proc. Am. Math. Monthly, 116, 1992, 701-706. | MR 1098396 | Zbl 0764.35031

[2] Ancona, A., Une propriété d'invariance des ensembles absorbants par perturbation d'un opérateur elliptique. Comm. PDE, 4, 1979, 321-337. | MR 525774 | Zbl 0459.35027

[3] Berestycki, H. - Nirenberg, L. - Varadhan, S.R.S., The principal eigenvalue and maximum principle for second-order elliptic operators in general domains. Comm. Pure Appl. math., 47, 1994, 47-92. | MR 1258192 | Zbl 0806.35129

[4] Brezis, H. - Ponce, A., Remarks on the strong maximum principle. Differential Integral Equations, 16, 2003, 1-12. | MR 1948870 | Zbl 1065.35082

[5] Brown, K.J. - Cosner, C. - Fleckinger, J., Principal eigenvalues for problems with indefinite weight function on RN. Proc. Amer. Math. Soc., 109, 1990, 147-155. | MR 1007489 | Zbl 0726.35089

[6] Brown, K.J. - Stavrakakis, N., Global Bifurcation results for a semilinear elliptic equation on all of RN. Duke Math. J., 85, 1996, 77-94. | MR 1412438 | Zbl 0862.35010

[7] Cuesta, M., Eigenvalue problems for the p-Laplacian with indefinite weights. Electron. J. Differential Equations, 33, 2001, 1-9. | MR 1836801 | Zbl 0964.35110

[8] De Figueiredo, D.G., Positive solutions of semilinear elliptic problems, Differential equations. Lecture Notes in Math., 957, Springer-Verlag, Berlin1982, 34-87. | MR 679140 | Zbl 0506.35038

[9] Evans, L.C. - Gariepy, R.F., Measure Theory and fine properties of functions, Studies in Advanced Mathematics. CRC Press, Boca Raton, 1992. | MR 1158660 | Zbl 0804.28001

[10] Gilbarg, D. - Trudinger, N.S., Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin 1983. | MR 737190 | Zbl 0562.35001

[11] Hess, P. - Kato, T., On some linear and nonlinear eigenvalue problems with an indefinite weight function. Comm. PDE, 5, 1980, 999-1030. | MR 588690 | Zbl 0477.35075

[12] Lucia, M. - Magrone, P. - Zhou, H.S., A Dirichlet problem with asymptotically linear and changing sign nonlinearity. Rev. Mat. Comput., 16, 2003, 465-481. | MR 2032928 | Zbl 1086.35048

[13] Manes, A. - Micheletti, A.M., Un'estensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordine. Bollettino U.M.I., 7, 1973, 285-301. | MR 344663 | Zbl 0275.49042

[14] Stampacchia, G., Équations elliptiques du second ordre à coefficients discontinus. Les Presses de l'Université de Montréal, Montréal1966. | MR 251373 | Zbl 0151.15501

[15] Szulkin, A. - Willem, M., Eigenvalue problems with indefinite weight. Studia Math., 135, 1999, 191-201. | MR 1690753 | Zbl 0931.35121

[16] Tertikas, A., Uniqueness and nonuniqueness of positive solutions for a semilinear elliptic equation in RN. Diff. and Int. Eqns., 8, 1995, 829-848. | MR 1306594 | Zbl 0823.35052

[17] Zhou, H.S., An application of a mountain pass theorem. Acta Math. Sinica (N.S.), 18, 2002, 27-36. | MR 1894835 | Zbl 1018.35020