Given an open set of , bounded or unbounded, and a function with but allowed to change sign, we give a short proof that the positive principal eigenvalue of the problem is unique and simple. We apply this result to study unbounded Palais-Smale sequences as well as to give a priori estimates on the set of critical points of functionals of the type when has a subquadratic growth at infinity.
Dato un aperto connesso di , limitato o illimitato, e una funzione con cui è consentito cambiare segno, si dimostra che l'autovalore principale positivo del problema è unico e semplice. Tale risultato viene applicato allo studio delle successioni di Palais-Smale illimitate ed utilizzato per costruire stime a priori sull'insieme dei punti critici di funzionali del tipo dove ha un andamento subquadratico all'infinito.
@article{RLIN_2005_9_16_2_133_0, author = {Marcello Lucia}, title = {On the uniqueness and simplicity of the principal eigenvalue}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {16}, year = {2005}, pages = {133-142}, zbl = {1225.35159}, mrnumber = {2225507}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2005_9_16_2_133_0} }
Lucia, Marcello. On the uniqueness and simplicity of the principal eigenvalue. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 16 (2005) pp. 133-142. http://gdmltest.u-ga.fr/item/RLIN_2005_9_16_2_133_0/
[1] Principal eigenvalues for indefinite-weight elliptic problems on . Proc. Am. Math. Monthly, 116, 1992, 701-706. | MR 1098396 | Zbl 0764.35031
,[2] Une propriété d'invariance des ensembles absorbants par perturbation d'un opérateur elliptique. Comm. PDE, 4, 1979, 321-337. | MR 525774 | Zbl 0459.35027
,[3] The principal eigenvalue and maximum principle for second-order elliptic operators in general domains. Comm. Pure Appl. math., 47, 1994, 47-92. | MR 1258192 | Zbl 0806.35129
- - ,[4] Remarks on the strong maximum principle. Differential Integral Equations, 16, 2003, 1-12. | MR 1948870 | Zbl 1065.35082
- ,[5] Principal eigenvalues for problems with indefinite weight function on . Proc. Amer. Math. Soc., 109, 1990, 147-155. | MR 1007489 | Zbl 0726.35089
- - ,[6] Global Bifurcation results for a semilinear elliptic equation on all of . Duke Math. J., 85, 1996, 77-94. | MR 1412438 | Zbl 0862.35010
- ,[7] Eigenvalue problems for the -Laplacian with indefinite weights. Electron. J. Differential Equations, 33, 2001, 1-9. | MR 1836801 | Zbl 0964.35110
,[8] 957, Springer-Verlag, Berlin1982, 34-87. | MR 679140 | Zbl 0506.35038
, Positive solutions of semilinear elliptic problems, Differential equations. Lecture Notes in Math.,[9] | MR 1158660 | Zbl 0804.28001
- , Measure Theory and fine properties of functions, Studies in Advanced Mathematics. CRC Press, Boca Raton, 1992.[10] | MR 737190 | Zbl 0562.35001
- , Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin 1983.[11] On some linear and nonlinear eigenvalue problems with an indefinite weight function. Comm. PDE, 5, 1980, 999-1030. | MR 588690 | Zbl 0477.35075
- ,[12] A Dirichlet problem with asymptotically linear and changing sign nonlinearity. Rev. Mat. Comput., 16, 2003, 465-481. | MR 2032928 | Zbl 1086.35048
- - ,[13] Un'estensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordine. Bollettino U.M.I., 7, 1973, 285-301. | MR 344663 | Zbl 0275.49042
- ,[14] | MR 251373 | Zbl 0151.15501
, Équations elliptiques du second ordre à coefficients discontinus. Les Presses de l'Université de Montréal, Montréal1966.[15] Eigenvalue problems with indefinite weight. Studia Math., 135, 1999, 191-201. | MR 1690753 | Zbl 0931.35121
- ,[16] Uniqueness and nonuniqueness of positive solutions for a semilinear elliptic equation in . Diff. and Int. Eqns., 8, 1995, 829-848. | MR 1306594 | Zbl 0823.35052
,[17] An application of a mountain pass theorem. Acta Math. Sinica (N.S.), 18, 2002, 27-36. | MR 1894835 | Zbl 1018.35020
,