On the geometry of moduli of curves and line bundles
Fontanari, Claudio
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 16 (2005), p. 45-59 / Harvested from Biblioteca Digitale Italiana di Matematica

Here we focus on the geometry of P¯d,g, the compactification of the universal Picard variety constructed by L. Caporaso. In particular, we show that the moduli space of spin curves constructed by M. Cornalba naturally injects into P¯d,g and we give generators and relations of the rational Picard group of P¯d,g, extending previous work by A. Kouvidakis.

Il presente lavoro è dedicato alla geometria di P¯d,g, la compattificazione della varietà di Picard universale costruita da L. Caporaso. In particolare, si dimostra che lo spazio dei moduli delle curve spin costruito da M. Cornalba si mappa iniettivamente in P¯d,g e si esibiscono generatori e relazioni del gruppo di Picard razionale di P¯d,g, estendendo un precedente risultato di A. Kouvidakis.

Publié le : 2005-03-01
@article{RLIN_2005_9_16_1_45_0,
     author = {Claudio Fontanari},
     title = {On the geometry of moduli of curves and line bundles},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {16},
     year = {2005},
     pages = {45-59},
     zbl = {1222.14055},
     mrnumber = {2225922},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_2005_9_16_1_45_0}
}
Fontanari, Claudio. On the geometry of moduli of curves and line bundles. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 16 (2005) pp. 45-59. http://gdmltest.u-ga.fr/item/RLIN_2005_9_16_1_45_0/

[1] Arbarello, E. - Cornalba, M., The Picard groups of the moduli spaces of curves. Topology, 26, 1987, 153-171. | MR 895568 | Zbl 0625.14014

[2] Arbarello, E. - Cornalba, M. - Griffiths, P. - Harris, J., Geometry of Algebraic Curves, I. Grundlehren Math. Wiss., 267, Springer-Verlag, New York 1985. | MR 770932 | Zbl 0559.14017

[3] Bini, G. - Fontanari, C., Moduli of Curves and Spin Structures via Algebraic Geometry. Trans. Amer. Math. Soc., to appear. | MR 2216264 | Zbl 1105.14030

[4] Caporaso, L., A compactification of the universal Picard variety over the moduli space of stable curves. J. Amer. Math. Soc., 7, 1994, 589-660. | MR 1254134 | Zbl 0827.14014

[5] Caporaso, L., On modular properties of odd theta characteristics. In: E. Previato (ed.), Advances in algebraic geometry motivated by physics (Lowell, MA, 2000). Contemp. Math., 276, Amer. Math. Soc., Providence, RI, 2001, 101-114. | MR 1837112 | Zbl 1008.14007

[6] Caporaso, L. - Casagrande, C. - Cornalba, M., Moduli of roots of line bundles on curves. Preprint math.AG/0404078, 2004. | MR 2302513 | Zbl 1140.14022

[7] Caporaso, L. - Sernesi, E., Recovering plane curves from their bitangents. J. Algebraic Geom., 12, 2003, 225-244. | MR 1949642 | Zbl 1080.14523

[8] Caporaso, L. - Sernesi, E., Characterizing curves by their odd theta-characteristics. J. Reine Angew. Math., 562, 2003, 101-135. | MR 2011333 | Zbl 1039.14011

[9] Cornalba, M., Moduli of curves and theta-characteristics. In: M. Cornalba - X. Gomez-Mont - A. Verjovsky (eds.), Lectures on Riemann surfaces (Trieste 1987). World Sci. Publishing, Singapore 1989, 560-589. | MR 1082361 | Zbl 0800.14011

[10] Cornalba, M., A remark on the Picard group of spin moduli space. Rend. Mat. Acc. Lincei, s. 9, v. 2, 1991, 211-217. | MR 1135424 | Zbl 0768.14010

[11] Harer, J., The rational Picard group of the moduli space of Riemann surfaces with spin structure. In: C.-F. Bödigheimer - R.M. Hain (eds.), Mapping class groups and moduli spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991). Contemp. Math., 150, Amer. Math. Soc., Providence, RI, 1993, 107-136. | MR 1234262 | Zbl 0814.14031

[12] Harris, J. - Morrison, I., Moduli of curves. Graduate Texts in Math., 187, Springer, New York-London 1998, 336 pp. | MR 1631825 | Zbl 0913.14005

[13] Hartshorne, R., Algebraic Geometry. Graduate Texts in Math., 52, Springer, New York1977, 496 pp. | MR 463157 | Zbl 0531.14001

[14] Jarvis, T.J., Torsion-free sheaves and moduli of generalized spin curves. Compositio Math., 110, 1998, 291-333. | MR 1602060 | Zbl 0912.14010

[15] Jarvis, T.J., Geometry of the moduli of higher spin curves. Internat. J. Math., 11, 2000, 637-663. | MR 1780734 | Zbl 1094.14504

[16] Jarvis, T.J., The Picard group of the moduli of higher spin curves. New York J. Math., 7, 2001, 23-47. | MR 1838471 | Zbl 0977.14010

[17] Kouvidakis, A., The Picard group of the universal Picard varieties over the moduli space of curves. J. Diff. Geom., 34, 1991, 839-850. | MR 1139648 | Zbl 0780.14004

[18] Pandharipande, R., A compactification over M¯g of the universal moduli space of slope-semistable vector bundles. J. Amer. Math. Soc., 9, 1996, 425-471. | MR 1308406 | Zbl 0886.14002