We study -integral representations of the -gamma and the -beta functions. As an application of these integral representations, we obtain a simple conceptual proof of a family of identities for Jacobi triple product, including Jacobi's identity, and of Ramanujan's formula for the bilateral hypergeometric series.
Studiamo la rappresentazione -integrale delle funzioni -gamma e -beta. Questo studio svela una -costante molto interessante. Come applicazione di queste rappresentazioni integrali, otteniamo una semlice dimostrazione concettuale di una famiglia di identità per il prodotto triplo di Jacobi, che include l'identità di Jacobi, e della formula di Ramanujan per le serie ipergeometriche bilaterali.
@article{RLIN_2005_9_16_1_11_0, author = {Alberto De Sole and Victor G. Kac}, title = {On integral representations of $q$-gamma and $q$-beta functions}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {16}, year = {2005}, pages = {11-29}, zbl = {1225.33017}, mrnumber = {2225920}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2005_9_16_1_11_0} }
De Sole, Alberto; Kac, Victor G. On integral representations of $q$-gamma and $q$-beta functions. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 16 (2005) pp. 11-29. http://gdmltest.u-ga.fr/item/RLIN_2005_9_16_1_11_0/
[1] Special functions. Encyclopedia of Mathematics and its Applications, vol. 1, Cambridge University Press, Cambridge 1999, 664 pp. | MR 1688958 | Zbl 0920.33001
- - ,[2] | MR 708496 | Zbl 0514.33001
, -hypergeometric functions and applications. Ellis Horwood Series in Mathematics and its Applications, Ellis Horwood Ltd., Chichester1983, 347 pp.[3] Basic hypergeometric series. Encyclopedia of Mathematics and its Applications, vol. 35, second edition, Cambridge University Press, Cambridge 1990, 456 pp. | MR 1052153 | Zbl 1129.33005
- ,[4] A generalization of the functions and . Proc. Roy. Soc. London, 74, 1904, 64-72. | JFM 35.0460.01
,[5] On -definite integrals. Quart. J. Pure and Applied Math., 41, 1910, 193-203. | JFM 41.0317.04
,[6] | MR 1865777 | Zbl 0986.05001
- , Quantum Calculus. Universitext, Springer-Verlag, New York 2002, 112 pp.[7] | MR 1104219 | Zbl 0716.17022
, Infinite dimensional Lie algebras. Third edition, Cambridge University Press, Cambridge1990, 400 pp.[8] 10, second edition, American Mathematical Society, Providence, RI, 1998, 201 pp. | MR 1651389 | Zbl 0861.17017
, Vertex algebras for beginners. University Lecture Series,[9] Integrable highest weight modules over affine superalgebras and number theory. In: et al. (eds.), Lie theory and geometry. Progr. Math., 123, Birkhäuser, Boston 1994, 415-456. | MR 1327543 | Zbl 0854.17028
- ,[10] Algebraic -integration and Fourier theory on quantum and braided spaces. Journal of Mathematical Physics, 35, 1994, 6802-6837. | MR 1303081 | Zbl 0826.17018
- ,[11] -special functions, a tutorial. Preprint math. CA/9403216, 1994. | MR 1490602 | Zbl 0768.33018
,[12] Compact quantum groups and -special functions. In: - (eds.), Representations of Lie groups and quantum groups. Pitman Research Notes in Mathematics Series, 311, Longman Scientific & Technical, 1994, 46-128. | MR 1431306 | Zbl 0821.17015
,[13] Special functions and -commuting variables. In: - - (eds.), Special functions, -series and related topics (Toronto, ON, 1995). Fields Inst. Commun., vol. 14, Amer. Math. Soc., Providence 1997, 131-166. | MR 1448685 | Zbl 0882.33014
,[14] Beitrage zur Theorie der durch die Heinesche Reihe. J. reine angew. Math., 70, 1869, 258-281. | JFM 02.0122.04
,