On integral representations of q-gamma and q-beta functions
De Sole, Alberto ; Kac, Victor G.
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 16 (2005), p. 11-29 / Harvested from Biblioteca Digitale Italiana di Matematica

We study q-integral representations of the q-gamma and the q-beta functions. As an application of these integral representations, we obtain a simple conceptual proof of a family of identities for Jacobi triple product, including Jacobi's identity, and of Ramanujan's formula for the bilateral hypergeometric series.

Studiamo la rappresentazione q-integrale delle funzioni q-gamma e q-beta. Questo studio svela una q-costante molto interessante. Come applicazione di queste rappresentazioni integrali, otteniamo una semlice dimostrazione concettuale di una famiglia di identità per il prodotto triplo di Jacobi, che include l'identità di Jacobi, e della formula di Ramanujan per le serie ipergeometriche bilaterali.

Publié le : 2005-03-01
@article{RLIN_2005_9_16_1_11_0,
     author = {Alberto De Sole and Victor G. Kac},
     title = {On integral representations of $q$-gamma and $q$-beta functions},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {16},
     year = {2005},
     pages = {11-29},
     zbl = {1225.33017},
     mrnumber = {2225920},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_2005_9_16_1_11_0}
}
De Sole, Alberto; Kac, Victor G. On integral representations of $q$-gamma and $q$-beta functions. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 16 (2005) pp. 11-29. http://gdmltest.u-ga.fr/item/RLIN_2005_9_16_1_11_0/

[1] Andrews, G.E. - Askey, R. - Roy, R., Special functions. Encyclopedia of Mathematics and its Applications, vol. 1, Cambridge University Press, Cambridge 1999, 664 pp. | MR 1688958 | Zbl 0920.33001

[2] Exton, H., q-hypergeometric functions and applications. Ellis Horwood Series in Mathematics and its Applications, Ellis Horwood Ltd., Chichester1983, 347 pp. | MR 708496 | Zbl 0514.33001

[3] Gasper, G. - Rahman, M., Basic hypergeometric series. Encyclopedia of Mathematics and its Applications, vol. 35, second edition, Cambridge University Press, Cambridge 1990, 456 pp. | MR 1052153 | Zbl 1129.33005

[4] Jackson, F.H., A generalization of the functions Γn and xn. Proc. Roy. Soc. London, 74, 1904, 64-72. | JFM 35.0460.01

[5] Jackson, F.H., On q-definite integrals. Quart. J. Pure and Applied Math., 41, 1910, 193-203. | JFM 41.0317.04

[6] Kac, V.G. - Cheung, P., Quantum Calculus. Universitext, Springer-Verlag, New York 2002, 112 pp. | MR 1865777 | Zbl 0986.05001

[7] Kac, V.G., Infinite dimensional Lie algebras. Third edition, Cambridge University Press, Cambridge1990, 400 pp. | MR 1104219 | Zbl 0716.17022

[8] Kac, V.G., Vertex algebras for beginners. University Lecture Series, 10, second edition, American Mathematical Society, Providence, RI, 1998, 201 pp. | MR 1651389 | Zbl 0861.17017

[9] Kac, V.G. - Wakimoto, M., Integrable highest weight modules over affine superalgebras and number theory. In: J.-L. Brylinski et al. (eds.), Lie theory and geometry. Progr. Math., 123, Birkhäuser, Boston 1994, 415-456. | MR 1327543 | Zbl 0854.17028

[10] Kempf, A. - Majid, S., Algebraic q-integration and Fourier theory on quantum and braided spaces. Journal of Mathematical Physics, 35, 1994, 6802-6837. | MR 1303081 | Zbl 0826.17018

[11] Koornwinder, T.H., q-special functions, a tutorial. Preprint math. CA/9403216, 1994. | MR 1490602 | Zbl 0768.33018

[12] Koornwinder, T.H., Compact quantum groups and q-special functions. In: V. Baldoni - M.A. Picardello (eds.), Representations of Lie groups and quantum groups. Pitman Research Notes in Mathematics Series, 311, Longman Scientific & Technical, 1994, 46-128. | MR 1431306 | Zbl 0821.17015

[13] Koornwinder, T.H., Special functions and q-commuting variables. In: M.E.H. Ismail - D.R. Masson - M. Rahman (eds.), Special functions, q-series and related topics (Toronto, ON, 1995). Fields Inst. Commun., vol. 14, Amer. Math. Soc., Providence 1997, 131-166. | MR 1448685 | Zbl 0882.33014

[14] Thomae, J., Beitrage zur Theorie der durch die Heinesche Reihe. J. reine angew. Math., 70, 1869, 258-281. | JFM 02.0122.04