Regularity results of free boundaries for Stefan type problems are discussed. The influence that curvature may have on the behavior of the free boundary is studied and various open problems are also mentioned.
@article{RLIN_2004_9_15_3-4_345_0, author = {Ioannis Athanasopoulos}, title = {Free boundary regularity in Stefan type problems}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {15}, year = {2004}, pages = {345-355}, zbl = {1105.35146}, mrnumber = {2148890}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2004_9_15_3-4_345_0} }
Athanasopoulos, Ioannis. Free boundary regularity in Stefan type problems. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 15 (2004) pp. 345-355. http://gdmltest.u-ga.fr/item/RLIN_2004_9_15_3-4_345_0/
[1] Variational problems with two-phases and their free boundaries. Trans. Amer. Math. Soc., 282, 1984, 431-461. | MR 732100 | Zbl 0844.35137
- - ,[2] Caloric functions in Lipschitz domains and the regularity of solutions to phase transition problems. Annals Math., 143, 1996, 413-434. | MR 1394964 | Zbl 0853.35049
- - ,[3] Regularity of the free boundary in parabolic phase transition problems. Acta Math., 176, 1996, 245-282. | MR 1397563 | Zbl 0891.35164
- - ,[4] Phase transition problems of parabolic type: flat free boundaries are smooth. Comm. Pure Appl. Math., 51, 1998, 77-112. | MR 1486632 | Zbl 0924.35197
- - ,[5] Stefan-like problems with curvature. J. Geom. Anal., 13, 2003, 21-27. | MR 1967033 | Zbl 1055.35146
- - ,[6] Continuity of the temperature in two-phase Stefan problems. Arch. Rational Mech., 81, 1983, 199-220. | MR 683353 | Zbl 0516.35080
- ,[7] A Harnock inequality approach to the interior regularity of elliptic equations. Ind. Univ. Math. J., 42, 1993, 145-157. | MR 1218709 | Zbl 0810.35023
- ,[8] | MR 679313
, Variational Problems and Free Boundary Problems. Wiley, New York1982.[9] Passive transfer of low-molecular nonelectrolytes across deformable membranes. I. Equations of convective-diffusion transfer of nonelectrolytes across deformable membranes of large curvature. Bull. of Math. Biology, 36, 1974, 365-377. | Zbl 0285.92004
,[10] On the regularity theory of fully nonlinear parabolic equation II. Comm. Pure Appl. Math., 45, 1992, 141-178. | MR 1139064 | Zbl 0774.35042
,[11] Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations. Math. Scad., 21, 1967, 17-37. | MR 239264 | Zbl 0164.13101
,