We study the realization of the operator in , where is a possibly unbounded convex open set in , is a convex unbounded function such that and , is the element with minimal norm in the subdifferential of at , and is a probability measure, infinitesimally invariant for . We show that , with domain is a dissipative self-adjoint operator in . Note that the functions in the domain of do not satisfy any particular boundary condition. Log-Sobolev and Poincaré inequalities allow then to study smoothing properties and asymptotic behavior of the semigroup generated by .
@article{RLIN_2004_9_15_3-4_315_0, author = {Giuseppe Da Prato and Alessandra Lunardi}, title = {On a class of elliptic operators with unbounded coefficients in convex domains}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {15}, year = {2004}, pages = {315-326}, zbl = {1162.35345}, mrnumber = {2148888}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2004_9_15_3-4_315_0} }
Da Prato, Giuseppe; Lunardi, Alessandra. On a class of elliptic operators with unbounded coefficients in convex domains. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 15 (2004) pp. 315-326. http://gdmltest.u-ga.fr/item/RLIN_2004_9_15_3-4_315_0/
[1] On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions. Comm. Part. Diff. Eqns., 26, 2001, 2037- 2080. | MR 1876411 | Zbl 0997.35012
- - ,[2]
, Opérateurs maximaux monotones. North-Holland, Amsterdam1973.[3] 1762, Springer-Verlag, Berlin2001. | MR 1840644 | Zbl 0983.60004
, Second order PDE’s in finite and infinite dimensions. A probabilistic approach. Lecture Notes in Mathematics,[4] | MR 990239 | Zbl 0699.35006
, Heat kernels and spectral theory. Cambridge Univ. Press, Cambridge1989.[5] Elliptic operators with unbounded drift coefficients and Neumann boundary condition. J. Diff. Eqns., 198, 2004, 35-52. | MR 2037749 | Zbl 1046.35025
- ,[6] Singular dissipative stochastic equations in Hilbert spaces. Probab. Theory Relat. Fields, 124, 2002, 261-303. | MR 1936019 | Zbl 1036.47029
- ,[7] 1718, Springer-Verlag, Berlin1999. | MR 1734956 | Zbl 0957.60002
, Uniqueness and non-uniqueness of singular diffusion operators. Lecture Notes in Mathematics,[8] On Kolmogorov’s equations for finite-dimensional diffusions. In: (ed.), Stochastic PDE’s and Kolmogorov Equations in Infinite Dimensions. Lecture Notes in Mathematics, 1715, Springer-Verlag, Berlin 1999, 1-64. | MR 1730228 | Zbl 0927.00037
,[9] Equations d’évolution linéaires associées à des semi-groupes de contractions dans les espaces . J. Funct. Anal., 72, 1987, 252-262. | MR 886813 | Zbl 0621.47039
,[10] Optimal and Schauder estimates for elliptic and parabolic operators with unbounded coefficients. In: - (eds.), Proceedings of the Conference Reaction-Diffusion Systems (Trieste 1995). Lect. Notes in Pure and Applied Math., 194, M. Dekker, New York 1998, 217-239. | MR 1472521 | Zbl 0887.47034
- ,[11] | Zbl 0676.28008
, Ergodic Theory. Cambridge Univ. Press, Cambridge1983.[12] -analysis of finite and infinite dimensional diffusion operators. In: (ed.), Stochastic PDE's and Kolmogorov Equations in Infinite Dimensions. Lecture Notes in Mathematics, 1715, Springer-Verlag, Berlin 1999, 65-116. | Zbl 0944.60078
,[13] (Nonsymmetric) Dirichlet operators on : existence, uniqueness and associated Markov processes. Ann. Sc. Norm. Sup. Pisa, Ser. IV, 28, 1999, 99-140. | MR 1679079 | Zbl 0946.31003
, , Interpolation theory, function spaces, differential operators. North-Holland, Amsterdam1978.