The problems of blow-up for nonlinear heat equations. Complete blow-up and avalanche formation
Vázquez, Juan Luis
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 15 (2004), p. 281-300 / Harvested from Biblioteca Digitale Italiana di Matematica

We review the main mathematical questions posed in blow-up problems for reaction-diffusion equations and discuss results of the author and collaborators on the subjects of continuation of solutions after blow-up, existence of transient blow-up solutions (so-called peaking solutions) and avalanche formation as a mechanism of complete blow-up.

Publié le : 2004-12-01
@article{RLIN_2004_9_15_3-4_281_0,
     author = {Juan Luis V\'azquez},
     title = {The problems of blow-up for nonlinear heat equations. Complete blow-up and avalanche formation},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {15},
     year = {2004},
     pages = {281-300},
     zbl = {1162.35392},
     mrnumber = {2148886},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_2004_9_15_3-4_281_0}
}
Vázquez, Juan Luis. The problems of blow-up for nonlinear heat equations. Complete blow-up and avalanche formation. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 15 (2004) pp. 281-300. http://gdmltest.u-ga.fr/item/RLIN_2004_9_15_3-4_281_0/

[1] Anderson, M., Geometrization of 3-Manifolds via the Ricci Flow. Notices of the AMS, 51, 2, 2004, 184-193. | MR 2026939 | Zbl 1161.53350

[2] Bandle, C. - Bruner, H., Blow-up in diffusion equations: A survey. J. Comput. Appl. Math., 97, 1998, 3-22. | MR 1651764 | Zbl 0932.65098

[3] Baras, P. - Cohen, L., Complete blow-up after Tmax for the solution of a semilinear heat equation. J. Funct. Anal., 71, 1987, 142-174. | MR 879705 | Zbl 0653.35037

[4] Bebernes, J. - Eberly, D., Mathematical Problems from Combustion Theory. Applied Mathematics Series, 83, Springer-Verlag, New York 1989. | MR 1012946 | Zbl 0692.35001

[5] Bebernes, J. - Li, C.-M. - Li, Yi, Travelling fronts in cylinders and their stability. Rocky Mountain J. Math., 27, 1997, 123-150. | MR 1453095 | Zbl 0913.35068

[6] Buckmaster, J.D. - Ludford, G.S.S., Lectures on Mathematical Combustion. CBMS-NSF Regional Conf. Series Appl. Math., 43, SIAM, Philadelphia 1983. | MR 765073 | Zbl 0574.76001

[7] Chasseigne, E. - Vázquez, J.L., Theory of extended solutions for fast diffusion equations in optimal classes of data. Radiation from singularities. Arch. Ration. Mech. Anal., 164, 2002, n. 2, 133-187. | MR 1929929 | Zbl 1018.35048

[8] Fila, M. - Matano, H., Connecting equilibria by blow-up solutions. In: International Conference on Differential Equations (Berlin 1999). 2 voll., World Sci. Publishing, River Edge, NJ 2000, 741-743. | MR 1870227 | Zbl 0969.35082

[9] Friedman, A., Remarks on nonlinear parabolic equations. In: Applications of Nonlinear Partial Differential Equations in Mathematical Physics. Amer. Math. Soc., Providence, RI, 1965, 3-23. | MR 186938 | Zbl 0192.19601

[10] Fujita, H., On the blowing-up of solutions of the Cauchy problem for ut=u+u1+α. J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 13, 1966, 109-124. | MR 214914 | Zbl 0163.34002

[11] Fujita, H., On the nonlinear equations u+eu=0vt=v+ev. Bull. Amer. Math. Soc., 75, 1969, 132-135. | MR 239258 | Zbl 0216.12101

[12] Galaktionov, V.A. - Posashkov, S.A., The equation ut=uxx+uβ. Localization, asymptotic behaviour of unbounded solutions. Keldysh Inst. Appl. Math. Acad. Sci. USSR, Preprint n. 97, 1985 (in Russian). | MR 832277

[13] Galaktionov, V.A. - Posashkov, S.A., Application of new comparison theorems in the investigation of unbounded solutions of nonlinear parabolic equations. Diff. Urav., 22, 1986, 1165-1173. | MR 853803 | Zbl 0632.35028

[14] Galaktionov, V.A. - Vázquez, J.L., Necessary and sufficient conditions for complete blow-up and extinction for one-dimensional quasilinear heat equations. Arch. Rational Mech. Anal., 129, 1995, 225-244. | MR 1328477 | Zbl 0827.35055

[15] Galaktionov, V.A. - Vázquez, J.L., Continuation of blow-up solutions of nonlinear heat equations in several space dimensions. Comm. Pure Appl. Math., 50, 1997, 1-67. | Zbl 0874.35057

[16] Galaktionov, V.A. - Vázquez, J.L., Incomplete blow-up and singular interfaces for quasilinear heat equations. Comm. Partial Differ. Equat., 22, 1997, 1405-1452. | MR 1469577 | Zbl 1023.35057

[17] Galaktionov, V.A. - Vázquez, J.L., The problem of blow-up in nonlinear parabolic equations. In: C. Conca - M. Del Pino - P. Felmer - R. Manásevich (eds.), Current Developments in PDE (a special issue: Proceedings of the Summer Course in Temuco, Chile, jan. 1999). Discrete Contin. Dynam. Systems, A, 8, 2, 2002, 399-433. | MR 1897690 | Zbl 1010.35057

[18] Giga, Y. - Kohn, R.V., Asymptotically self-similar blow-up of semilinear heat equations. Comm. Pure Appl. Math., 38, 1985, 297-319. | MR 784476 | Zbl 0585.35051

[19] Giga, Y. - Kohn, R.V., Characterizing blow-up using similarity variables. Indiana Univ. Math. J., 36, 1987, 1-40. | MR 876989 | Zbl 0601.35052

[20] Giga, Y. - Kohn, R.V., Nondegeneracy of blow-up for semilinear heat equations. Comm. Pure Appl. Math., 42, 1989, 845-884. | MR 1003437 | Zbl 0703.35020

[21] Hamilton, R., Three manifolds of positive Ricci curvature. J. Differential Geom., 17, 1982, 255-306. | MR 664497 | Zbl 0504.53034

[22] Hamilton, R., The formation of singularities in the Ricci flow. Surveys in Differential Geometry, vol. 2, International Press, 1955, 7-136. | MR 1375255 | Zbl 0867.53030

[23] Kaplan, S., On the growth of solutions of quasilinear parabolic equations. Comm. Pure Appl. Math., 16, 1963, 305-330. | MR 160044 | Zbl 0156.33503

[24] Kazdan, J.L. - Warner, F.W., Curvature functions for compact 2-manifolds. Annals of Math., 99, 1974, 14-47. | MR 343205 | Zbl 0273.53034

[25] Kolmogorov, A.N. - Petrovskii, I.G. - Piskunov, N.S., A study of a diffusion equation coupled with the growth in the amount of a material, and its application to a biological problem. Byull. Moskov. Gos. Univ., Sect. A, 1, n. 6, 1937, 1-26.

[26] Lacey, A.A. - Tzanetis, D., Complete blow-up for a semilinear diffusion equation with a sufficiently large initial condition. IMA J. Appl. Math., 42, 1988, 207-215. | MR 984007 | Zbl 0699.35151

[27] Lacey, A.A. - Tzanetis, D., Global, unbounded solutions to a parabolic equation. J. Differ. Equat., 101, 1993, 80-102. | MR 1199484 | Zbl 0799.35123

[28] Lepin, L.A., Self-similar solutions of a semilinear heat equation. Mathematical Modelling, 2, 1990, 63-74 (in Russian). | MR 1059601 | Zbl 0972.35506

[29] Levine, H.A., Quenching, nonquenching and beyond quenching for solutions of some parabolic equations. Ann. Mat. Pura Appl., 155, 1989, 243-290 (also, Quenching and beyond: a survey of recent results. Proc. Int. Conf. on Nonlinear Mathematical Problems in Science and Industry (Iwaki, 1992), GAKUTO Internat. Ser. Math. Sci. and Appl., vol. II, Tokyo 1993, 501-512). | MR 1042837 | Zbl 0743.35010

[30] Masuda, K., Analytic solutions of some nonlinear diffusion equations. Math. Z., 187, 1984, 61-73. | MR 753420 | Zbl 0526.35044

[31] Merle, F. - Zaag, H., Stability of the blow-up profile for equations of the type ut=u+up-1u. Duke Math. J., 86, 1997, 143-195. | MR 1427848 | Zbl 0872.35049

[32] Osgood, W.F., Beweis der Existenz einer Lösung der Differentialgleichung dy/dx=fx,y ohne Hinzunahme der Cauchy-Lipschitzschen Bedingung. Monatshefte für Mathematik und Physik (Vienna), 9, 1898, 331-345. | JFM 29.0260.03 | MR 1546565

[33] Peral, I. - Vázquez, J.L., On the stability or instability of the singular solution of the semilinear heat equation with exponential reaction term. Arch. Rat. Mech. Anal., 129, 1995, 201-224. | MR 1328476 | Zbl 0821.35080

[34] Quirós, F. - Rossi, J.D. - Vázquez, J.L., Complete blow-up and thermal avalanche for heat equations with nonlinear boundary conditions. Comm. Partial Differential Equations, 27, 2002, 395-424. | MR 1886965 | Zbl 0996.35036

[35] Quirós, F. - Rossi, J.D. - Vázquez, J.L., Thermal avalanche for blow-up solutions of semilinear heat equations. Comm. Pure Appl. Math., 57, 2004, n. 1, 59-98. | MR 2007356 | Zbl 1036.35084

[36] Samarskii, A.A. - Galaktionov, V.A. - Kurdyumov, S.P. - Mikhailov, A.P., Blow-up in problems for quasilinear parabolic equations. Nauka, Moscow 1987 (in Russian; English transl.: Walter de Gruyter, Berlin 1995). | Zbl 1020.35001

[37] Smoller, J., Shock-Waves and Reaction-Diffusion Equations. Springer-Verlag, New York1983. | MR 688146 | Zbl 0807.35002

[38] Vázquez, J.L., Domain of existence and blowup for the exponential reaction-diffusion equation. Indiana Univ. Math. J., 48, 2, 1999, 677-709. | MR 1722813 | Zbl 0928.35080

[39] Vázquez, J.L., Asymptotic behaviour for the PME in the whole space. J. Evol. Equ., 3, 2003, n. 1, 67-118. | Zbl 1036.35108

[40] Velázquez, J.J.L., Classification of singularities for blowing-up solutions in higher dimensions. Trans. Amer. Math. Soc., 338, 1993, 441-464. | MR 1134760 | Zbl 0803.35015

[41] Zel'Dovich, Ya.B. - Barenblatt, G.I. - Librovich, V.B. - Makhviladze, G.M., The Mathematical Theory of Combustion and Explosions. Consultants Bureau, New York 1985. | MR 781350

[42] Zel'Dovich, Ya.B. - Frank-Kamenetskii, D.A., The theory of thermal propagation of flames. Zh. Fiz. Khim., 12, 1938, 100-105 (in Russian; English transl. in: Collected Works of Ya.B. Zeldovich, vol. 1, Princeton Univ. Press, 1992).