The mathematical analysis on various mathematical models arisen in semiconductor science has attracted a lot of attention in both applied mathematics and semiconductor physics. It is important to understand the relations between the various models which are different kind of nonlinear system of P.D.Es. The emphasis of this paper is on the relation between the drift-diffusion model and the diffusion equation. This is given by a quasineutral limit from the DD model to the diffusion equation.
@article{RLIN_2004_9_15_3-4_249_0, author = {Ling Hsiao}, title = {The quasineutral limit problem in semiconductors sciences}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {15}, year = {2004}, pages = {249-256}, zbl = {1105.35122}, mrnumber = {2148883}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2004_9_15_3-4_249_0} }
Hsiao, Ling. The quasineutral limit problem in semiconductors sciences. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 15 (2004) pp. 249-256. http://gdmltest.u-ga.fr/item/RLIN_2004_9_15_3-4_249_0/
[1] Global existence and relaxation limit for smooth solutions to the Euler-Poisson model for semiconductors. SIAM J. Math. Anal., 32(3), 2000, 572-587 (electronic). | MR 1786158 | Zbl 0984.35104
- - ,[2] The initial time layer problem and the quasineutral limit in a nonlinear drift diffusion model for semiconductors. Nonlinear Differential Equations Appl., 8(3), 2001, 237-249. | MR 1841258 | Zbl 0980.35158
,[3] Quasi-neutral limit of a nonlinear drift diffusion model for semiconductors. J. Math. Anal. Appl., 268(1), 2002, 184-199. | MR 1893201 | Zbl 1016.82034
- - - ,[4] The initial time layer problem and the quasineutral limit in the semiconductor drift-diffusion model. European J. Appl. Math., 12(4), 2001, 497-512. | MR 1852311 | Zbl 1018.82024
- - - ,[5] The asymptotic behavior of global smooth solutions to the multidimensional hydrodynamic model for semiconductors. Math. Methods Appl. Sci., 26, 2003, 1187-1210. | MR 2002977 | Zbl 1027.35071
- - ,[6] The asymptotic behavior of global smooth solutions to the multidimensional hydrodynamic model for semiconductors. J. Diff. Eqns., 192, 2003, 111-133. | MR 1987086 | Zbl 1045.35088
- - ,[7] Quasineutral limit of a standard drift diffusion model for semiconductors. Sci. China Ser. A, 45(1), 2002, 33-41. | MR 1894957 | Zbl 1054.82031
- - ,[8] Quasineutral limit of a nonlinear drift diffusion model for semiconductors: the fast diffusion case. Advances in Math., vol. 32, no. 5, 2003, 615-622. | MR 2057508 | Zbl 1016.82034
- ,[9] Quasineutral limit of a transient junction model for semiconductors. Preprint.
- ,[10] Asymptotic behaviour of global smooth solutions to the multidimensional hydrodynamic model for semiconductors. Math. Methods Appl. Sci., 25(8), 2002, 663-700. | MR 1900649 | Zbl 1010.35071
- - ,[11] The global weak solution and relaxation limits of the initial-boundary value problem to the bipolar hydrodynamic model for semiconductors. Math. Models Methods Appl. Sci., 10(9), 2000, 1333-1361. | MR 1796567 | Zbl 1061.82027
- ,[12] Global existence and exponential stability of smooth solutions to a multidimensional nonisentropic Euler-Poisson equations. Acta Mathematica Sci., to appear. | MR 2073259 | Zbl 1065.35186
- ,[13] A hierarchy of hydrodynamic models for plasmas. Quasi-neutral limits in the drift-diffusion equations. Asymptot. Anal., 28(1), 2001, 49-73. | MR 1865570 | Zbl 1045.76058
- ,[14] | MR 1063852 | Zbl 0765.35001
- - , Semiconductor Equations. Springer-Verlag, Vienna 1990.[15] An asymptotic analysis of a transient -junction model. SIAM J. Appl. Math., 47(3), 1987, 624-642. | MR 889643 | Zbl 0657.35007
,[16] The transient behaviour of multidimensional -diodes in low injection. Math. Methods Appl. Sci., 16(4), 1993, 265-279. | MR 1213184 | Zbl 0780.45007
- ,[17] Theory of flow of electrons and holes in germanium and other semiconductors. Bell Syst. Tech. J., 29, 1950, 560-607.
,