Hysteresis operators are illustrated, and a weak formulation is studied for an initial- and boundary-value problem associated to the equation ; here is a (possibly discontinuous) hysteresis operator, is a second order elliptic operator, is a known function. Problems of this sort arise in plasticity, ferromagnetism, ferroelectricity, and so on. In particular an existence result is outlined.
@article{RLIN_2004_9_15_3-4_235_0, author = {Augusto Visintin}, title = {Quasilinear hyperbolic equations with hysteresis}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {15}, year = {2004}, pages = {235-247}, zbl = {1162.35424}, mrnumber = {2148882}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2004_9_15_3-4_235_0} }
Visintin, Augusto. Quasilinear hyperbolic equations with hysteresis. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 15 (2004) pp. 235-247. http://gdmltest.u-ga.fr/item/RLIN_2004_9_15_3-4_235_0/
[1]
, Hysteresis in Magnetism. Academic Press, Boston1998.[2] Solution périodique de l’équation de la ferrorésonance avec hystérésis. C.R. Acad. Sci. Paris, Série A, 263, 1966, 497-499. | MR 201106 | Zbl 0152.42103
,[3] 1584 (A. Visintin, ed.). Springer-Verlag, Berlin 1994. | MR 1321830 | Zbl 0801.00028
, Phase Transitions and Hysteresis. Lecture Notes in Mathematics, vol.[4] | MR 1411908 | Zbl 0951.74002
- , Hysteresis and Phase Transitions. Springer, Berlin 1996.[5] Une généralisation vectorielle du modèle de Preisach pour l’hystérésis. C.R. Ac. Sci. Paris I, 297, 1983, 437-440. | MR 732853 | Zbl 0546.35068
- ,[6] | Zbl 0424.01002
, The evolution of mechanics. Sijthoff and Noordhoff, Alphen aan den Rijn, 1980. Original edition: L’évolution de la méchanique. Joanin, Paris1903.[7] Some applications of statistical methods to describing deformations of bodies. Izv. Akad. Nauk S.S.S.R., Techn. Ser., 9, 1944, 580-590 (in Russian).
,[8] | MR 987431
- , Systems with Hysteresis. Springer, Berlin 1989 (Russian ed. Nauka, Moscow 1983).[9] | Zbl 1187.35003
, Convexity, Hysteresis and Dissipation in Hyperbolic Equations. Gakkotosho, Tokyo1997.[10] Vector Preisach model of hysteresis. J. Appl. Phys., 63, 1988, 2995-3000. | Zbl 1142.34028
,[11] | MR 1083150 | Zbl 0723.73003
, Mathematical Models of Hysteresis. Springer, New York1991.[12] Spannungsverteilung in plastischen Körpern. In: - (eds.), Proceedings of the first International Congress for Applied Mechanics (Delft, 22-26 April 1924). J. Waltman Jr., Delft 1925, 43-54. | JFM 51.0649.02
,[13] Ein Gedankenmodell zur kinetischen Theorie der festen Körper. Z. Angew. Math. Mech., 8, 1928, 85-106. | JFM 54.0847.04
,[14] Über die magnetische Nachwirkung. Z. Physik, 94, 1935, 277-302.
,[15] | MR 1235109 | Zbl 0785.00016
, Models of Hysteresis. Longman, Harlow1993.[16] | MR 1329094 | Zbl 0820.35004
, Differential Models of Hysteresis. Springer, Berlin1994.[17] Six talks on hysteresis. C.R.M. Proceedings and Lecture Notes, 13, 1998, 207-236. | MR 1619117 | Zbl 0918.35067
,[18] Quasi-linear hyperbolic equations with hysteresis. Ann. Inst. H. Poincaré, Nonlinear Analysis, 19, 2002, 451-476. | MR 1912263 | Zbl 1027.35076
,[19] Maxwell's equations with vector hysteresis. Arch. Rat. Mech. Anal., in press. | Zbl 1145.78003
,