Some remarks on multidimensional systems of conservation laws
Bressan, Alberto
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 15 (2004), p. 225-233 / Harvested from Biblioteca Digitale Italiana di Matematica

This note is concerned with the Cauchy problem for hyperbolic systems of conservation laws in several space dimensions. We first discuss an example of ill-posedness, for a special system having a radial symmetry property. Some conjectures are formulated, on the compactness of the set of flow maps generated by vector fields with bounded variation.

Publié le : 2004-12-01
@article{RLIN_2004_9_15_3-4_225_0,
     author = {Alberto Bressan},
     title = {Some remarks on multidimensional systems of conservation laws},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {15},
     year = {2004},
     pages = {225-233},
     zbl = {1162.35412},
     mrnumber = {2148881},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_2004_9_15_3-4_225_0}
}
Bressan, Alberto. Some remarks on multidimensional systems of conservation laws. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 15 (2004) pp. 225-233. http://gdmltest.u-ga.fr/item/RLIN_2004_9_15_3-4_225_0/

[1] Ambrosio, L., Transport equation and the Cauchy problem for BV vector fields. Preprint 2003. | MR 2096794 | Zbl 1075.35087

[2] Brenner, P., The Cauchy problem for the symmetric hyperbolic systems in Lp. Math. Scand., 19, 1966, 27-37. | MR 212427 | Zbl 0154.11304

[3] Bressan, A., Hyperbolic systems of conservation laws. The one dimensional Cauchy problem. Oxford University Press, 2000. | Zbl 0997.35002

[4] Bressan, A., An ill posed Cauchy problem for a hyperbolic system in two space dimensions. Rend. Sem. Mat. Univ. Padova, 110, 2003, 103-117. | MR 2033003 | Zbl 1114.35123

[5] Bressan, A., A lemma and a conjecture on the cost of rearrangements. Rend. Sem. Mat. Univ. Padova, 110, 2003, 97-102. | MR 2033002 | Zbl 1114.05002

[6] Bressan, A. - Liu, T.P. - Yang, T., L1 stability estimates for n×n conservation laws. Arch. Rational Mech. Anal., 149, 1999, 1-22. | MR 1723032 | Zbl 0938.35093

[7] Dafermos, C., Hyperbolic conservation laws in continuum physics. Springer-Verlag, Berlin1999. | Zbl 1196.35001

[8] Diperna, R. - Lions, P.L., Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math., 98, 1989, 511-517. | MR 1022305 | Zbl 0696.34049

[9] Gärding, L., Problèmes de Cauchy pour les systèmes quasi-linéaires d’ordre un strictement hyperboliques. In: Les E.D.P’s, vol. 117, Paris1963, Colloques Internationaux du CNRS, 33-40. | MR 171079 | Zbl 0239.35013

[10] Glimm, J., Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math., 18, 1965, 697-715. | MR 194770 | Zbl 0141.28902

[11] Kruzhkov, S., First-order quasilinear equations with several space variables. Math. USSR Sbornik, 10, 1970, 217-273. | Zbl 0215.16203

[12] Majda, A., Compressible fluid flow and systems of conservation laws in several space variables. Springer-Verlag, New York1984. | MR 748308 | Zbl 0537.76001

[13] Panov, E.Y., On the theory of generalized entropy solutions of the Cauchy problem for a class of non-strictly hyperbolic systems of conservation laws. Sbornik: Mathematics, 191, 2000, 121-150. | MR 1753495 | Zbl 0954.35107

[14] Rauch, J., BV estimates fail for most quasilinear hyperbolic systems in dimensions greater than one. Comm. Math. Phys., 106, 1986, 481-484. | MR 859822 | Zbl 0619.35073

[15] Serre, D., Solutions classiques globales des équations d’Euler pour un fluide parfait compressible. Ann. Inst. Fourier, 47, 1997, 139-153. | MR 1437182 | Zbl 0864.35069

[16] Serre, D., Systems of Conservation Laws I. Cambridge University Press, 2000. | MR 1775057 | Zbl 0936.35001

[17] Smoller, J., Shock Waves and Reaction-Diffusion Equations. Springer-Verlag, New York1983. | MR 688146 | Zbl 0807.35002

[18] Zheng, Y., Systems of conservation laws: two-dimensional Riemann problems. Birkhäuser, 2001. | MR 1839813 | Zbl 0971.35002

[19] Ziemer, W.P., Weakly Differentiable Functions. Springer-Verlag, New York1989. | MR 1014685 | Zbl 0692.46022