A competition-diffusion system, where populations of healthy and malignant cells compete and move on a neutral matrix, is analyzed. A coupled system of degenerate nonlinear parabolic equations is derived through a scaling procedure from the microscopic, Markovian dynamics. The healthy cells move much slower than the malignant ones, such that no diffusion for their density survives in the limit. The malignant cells may locally accumulate, while for the healthy ones an exclusion rule is considered. The asymptotic behavior of the system can be partially described through the analysis of the stationary wave which connects different equilibria.
@article{RLIN_2004_9_15_3-4_215_0, author = {Stephan Luckhaus and Livio Triolo}, title = {The continuum reaction-diffusion limit of a stochastic cellular growth model}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {15}, year = {2004}, pages = {215-223}, zbl = {1162.60346}, mrnumber = {2148880}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2004_9_15_3-4_215_0} }
Luckhaus, Stephan; Triolo, Livio. The continuum reaction-diffusion limit of a stochastic cellular growth model. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 15 (2004) pp. 215-223. http://gdmltest.u-ga.fr/item/RLIN_2004_9_15_3-4_215_0/
[1] | MR 2091955 | Zbl 0753.60055
, From Markov Chains to Non-equilibrium Particle Systems. World Scientific, Singapore1992.[2] 1501, Springer-Verlag, Berlin-Heidelberg-New York 1991. | MR 1175626 | Zbl 0754.60122
- , Mathematical methods for hydrodynamical limits. Lecture Notes in Mathematics,[3] Traveling wave solutions of diffusive Lotka-Volterra equations: a heteroclinic connection in . Trans. Am. Math. Soc., 286, 1984, 557-594. | MR 760975 | Zbl 0556.35078
,[4] The importance of being discrete (and spatial). Theor. Population Biol., 46, 1994, 363-394. | Zbl 0846.92027
- ,[5] Particle systems and reaction diffusion equations. Ann. Probab., 22, 1994, 289-333. | MR 1258879 | Zbl 0799.60093
- ,[6] 28, Springer-Verlag, Berlin-Heidelberg-New York1978. | MR 527914 | Zbl 0403.92004
, Mathematical aspects of reacting and diffusing systems. Lectures Notes in Biomath.,[7] A reaction-diffusion model of cancer invasion. Cancer Res., 56, 1996, 5745-5753.
- ,[8] The competition-diffusion limit of a stochastic growth model. Math. and Comp. Modelling, 37, 2003, 1153-1161. | Zbl 1046.92027
- - ,[9] Traveling waves in a simple population model involving growth and death. Bull. Math. Biol., 42, 1980, 397-429. | MR 661329 | Zbl 0431.92021
- ,[10] | MR 1707314 | Zbl 0927.60002
- , Scaling limits for interacting particle systems. Springer-Verlag, Berlin-Heidelberg-New York 1999.[11] The stability of traveling wave front solutions of a reaction-diffusion system. SIAM J. Appl. Math., 41, 1981, 145-167. | MR 622879 | Zbl 0467.35011
- ,[12] | MR 776231 | Zbl 1103.82016
, Interacting Particle Systems. Springer-Verlag, Berlin-Heidelberg-New York1985.[13] Traveling shock waves arising in a model of malignant invasion. SIAM J. Appl. Math., 60, 2000, 463-476. | MR 1740255 | Zbl 0944.34021
- - ,[14] Hydrodynamic limits for a two-species reaction-diffusion process. Annals of Appl. Probab., 10, 2000, 163-191. | MR 1765207 | Zbl 1171.60394
,[15] A two parameter family of travelling waves with a singular barrier arising from the modelling of extracellular matrix mediated cellular invasion. Physica D, 126, 1999, 145-159. | Zbl 1001.92523
- - - ,