We discuss the stability and instability properties of steady state solutions to single equations, shadow systems, as well as systems. Our basic observation is that the more complicated the pattern are, the more unstable they tend to be.
@article{RLIN_2004_9_15_3-4_197_0, author = {Wei-Ming Ni}, title = {Diffusion and cross-diffusion in pattern formation}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {15}, year = {2004}, pages = {197-214}, zbl = {1162.35370}, mrnumber = {2148879}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2004_9_15_3-4_197_0} }
Ni, Wei-Ming. Diffusion and cross-diffusion in pattern formation. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 15 (2004) pp. 197-214. http://gdmltest.u-ga.fr/item/RLIN_2004_9_15_3-4_197_0/
[1] Dynamic theory of quasilinear parabolic equations II. Reaction-diffusion systems. Diff. Integral Eqns., 3, 1990, 13-75. | MR 1014726 | Zbl 0729.35062
,[2] Nonhomogeneous linear quasilinear elliptic and parabolic boundary value problems. In: - (eds.), Function Spaces, Differential Operators and Nonlinear Analysis. Teubner-Texte zur Math., 133, Stuttgart-Leipzig 1993, 9-126. | MR 1242579 | Zbl 0810.35037
,[3] Supersolution, monotone iteration and stability. J. Diff. Eqns., 21, 1976, 365-377. | MR 407451 | Zbl 0319.35039
,[4] | MR 2191264 | Zbl 1087.92058
- , Spatial ecology via reaction-diffusion equations. John Wiley and Sons, 2003.[5] Instability results for a reaction-diffusion equation with Neumann boundary conditions. J. Diff. Eqns., 27, 1978, 266-273. | MR 480282 | Zbl 0338.35055
- ,[6] Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion. Discrete and Continuous Dynamical Systems, 10, 2004, 719-730. | MR 2018876 | Zbl 1047.35054
- - ,[7] A theory of biological pattern formation. Kybernetik, 12, 1972, 30-39.
- ,[8] Shadow systems and attractors in reaction-diffusion equations. Appl. Anal., 32, 1989, 287-303. | MR 1030101 | Zbl 0667.34072
- ,[9] A nonlinear parabolic equation with varying domain. Arch. Rat. Mech. Anal., 86, 1984, 99-123. | MR 751304 | Zbl 0569.35048
- ,[10] | MR 492532 | Zbl 0414.92026
, An introduction to population ecology. Yale University Press, New Haven, CT1978.[11] Remarks on the behavior of certain eigenvalues on a singularly perturbed domain with several thin channels. Comm. PDE, 17, 1992, 523-552. | MR 1163435 | Zbl 0766.35029
- ,[12] Cross diffusion systems on spatial dimensional domains. Indiana Univ. Math. J., 51, 2002, 625-643. | MR 1911048 | Zbl 1046.35061
,[13] Stability of solutions of semilinear diffusion equations. Preprint, 1986.
- ,[14] Diffusion, self-diffusion and cross-diffusion. J. Diff. Eqns., 131, 1996, 79-131. | MR 1415047 | Zbl 0867.35032
- ,[15] Diffusion vs cross diffusion: An elliptic approach. J. Diff. Eqns., 154, 1999, 157-190. | MR 1685622 | Zbl 0934.35040
- ,[16] On the global existence of a cross-diffusion system. Discrete and Continuous Dynamical Systems, 4, 1998, 193-203. | MR 1616969 | Zbl 0960.35049
- - ,[17] On a limiting system in the Lotka-Volterra competition with cross-diffusion. Discrete and Continuous Dynamical Systems, 10, 2004, 435-458. | MR 2026204 | Zbl 1174.35360
- - ,[18] Asymptotic behavior and stability of solutions of semilinear diffusion equations. Publ. RIMS, 15, 1979, 401-454. | MR 555661 | Zbl 0445.35063
,[19] | Zbl 0676.35026
, Some aspects of semilinear ellitpic equations. Lecture Notes, National Tsinghua Univ., Hsinchu-Taiwan-China1987.[20] Diffusion, cross-diffusion, and their spike-layer steady states. Notices of Amer. Math. Soc., 45, 1998, 9-18. | MR 1490535 | Zbl 0917.35047
,[21] Montonicity of stable solutions in shadow systems. Trans. Amer. Math. Soc., 353, 2001, 5057-5069. | MR 1852094 | Zbl 0981.35018
- - ,[22] On the Neumann problem for some semilinear elliptic equations and systems of activator-inhibitor type. Trans. Amer. Math. Soc., 297, 1986, 351-368. | MR 849484 | Zbl 0635.35031
- ,[23] On the shape of least-energy solutions to a semilinear Neumann problem. Comm. Pure Appl. Math., 44, 1991, 819-851. | MR 1115095 | Zbl 0754.35042
- ,[24] Locating the peaks of least-energy solutions to a semilinear Neumann problem. Duke Math. J., 70, 1993, 247-281. | MR 1219814 | Zbl 0796.35056
- ,[25] Point condensation generated by a reaction-diffusion system in axially symmetric domains. Japan J. Industrial Appl. Math., 12, 1995, 327-365. | MR 1337211 | Zbl 0843.35006
- ,[26] Stability analysis of point-condensation solutions to a reaction-diffusion system. Tokoku Math. J., submitted.
- - ,[27] Stability of least-energy patterns in a shadow system of an activator-inhibitor model. Japan J. Industrial Appl. Math., 18, 2001, 259-272. | MR 1842911 | Zbl 1200.35172
- - ,[28] Global existence of solutions for a strongly coupled quasilinear parabolic system. Nonlinear Analysis, 14, 1990, 657-689. | MR 1049787 | Zbl 0716.35034
- ,[29] Invariant rectangles and strongly coupled semilinear paraboli systems. Forum Math., 2, 1990, 175-202. | MR 1042618 | Zbl 0701.35091
- ,[30] Monotone methods in nonlinear elliptic and parabolic boundary value problems. Indiana Univ. Math. J., 21, 1972, 979-1000. | MR 299921 | Zbl 0223.35038
,[31] Spatial segregation of interacting species. J. Theo. Biology, 79, 1979, 83-99. | MR 540951
- - ,[32] Uniform boundedness and convergence of solutions to cross-diffusion systems. J. Diff. Eqns., 185, 2002, 281-305. | MR 1935640 | Zbl 1032.35090
,[33] A sign-changing global minimizer on a convex domain. In: - - - - (eds.), Progress in Partial Differential Equations: Elliptic and Parabolic Problems. Pitman Research Notes in Math., 266, Longman, Harlow 1992, 251-258. | MR 1194233 | Zbl 0789.35066
,[34] Point-condensation for a reaction-diffusion system. J. Diff. Eqns., 61, 1986, 208-249. | MR 823402 | Zbl 0627.35049
,[35] Mémoires pour servir à l’histoire d’un genre de polypes d’eau douce, à bras en forme de cornes. Leyden1744.
,[36] The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. London, B, 237, 1952, 37-72.
,[37] 45, SIAM, Philadelphia1983. | MR 778562 | Zbl 0572.92019
, Competition models in population biology. CBMS-NSF Conf. Ser. Appl. Math.,[38] Global solution to some quasilinear parabolic system in population dynamics. Nonlinear Analysis, 21, 1993, 531-556. | MR 1245865 | Zbl 0810.35046
,