We deal with a Penrose-Fife type model for phase transition. We assume a rather general constitutive low for the heat flux and treat the Dirichlet and Neumann boundary condition for the temperature. Some of our proofs apply to different types of boundary conditions as well and improve some results existing in the literature.
@article{RLIN_2004_9_15_3-4_169_0, author = {Gianni Gilardi}, title = {On a phase transition model of Penrose-Fife type}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {15}, year = {2004}, pages = {169-181}, zbl = {1162.35382}, mrnumber = {2148877}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2004_9_15_3-4_169_0} }
Gilardi, Gianni. On a phase transition model of Penrose-Fife type. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 15 (2004) pp. 169-181. http://gdmltest.u-ga.fr/item/RLIN_2004_9_15_3-4_169_0/
[1] | MR 1411908 | Zbl 0951.74002
- , Hysteresis and phase transitions. Springer-Verlag, NewYork 1996.[2] On a Penrose-Fife phase field model with inhomogeneous Neumann boundary condition for the temperature. Preprint IAN-CNR n. 1327, 2003, 1-21. | MR 2054932 | Zbl 1224.35222
- - - ,[3] Weak solutions to the Penrose-Fife phase field model for a class of admissible flux laws. Physica D, vol. 111, 1998, 311-334. | MR 1601442 | Zbl 0929.35062
- ,[4] Global solution to the Penrose-Fife phase field model with special heat flux laws. In: - - (eds.), Variations of Domains and Free-Boundary Problems in Solid Mechanics. Solid Mech. Appl., 66, Kluwer Acad. Publ., Dordrecht 1999, 181-188. | MR 1672241
- - ,[5] On a Penrose-Fife model with zero interfacial energy leading to a phase-field system of relaxed Stefan type. Ann. Mat. Pura Appl., vol. 169, 1995, 269-289. | MR 1378478 | Zbl 0852.35030
- ,[6] On a Penrose-Fife type system with Dirichlet boundary conditions for the temperature. Math. Methods Appl. Sci., 26, 2003, 1303-1325. | MR 2004103 | Zbl 1029.82014
- ,[7] Global solutions to a Penrose-Fife phase-field model under flux boundary conditions for the inverse temperature. Math. Methods Appl. Sci., vol. 19, 1996, 1053-1072. | MR 1402815 | Zbl 0859.35049
- - ,[8] Global existence for the Penrose-Fife phase-field model of Ising ferromagnets. Adv Math. Sci. Appl., vol. 6, 1996, 227-241. | MR 1385769 | Zbl 0858.35053
- - ,[9] Weak solutions of nonlinear systems for non-isothermal phase transitions. Adv Math. Sci. Appl., vol. 9, 1999, 499-521. | MR 1690439 | Zbl 0930.35037
- ,[10] Evolution equations of nonlinear variational inequalities arising from phase change problems. Nonlinear Analysis, TMA, vol. 22, 1994, 1163-1180. | MR 1279139 | Zbl 0827.35070
- ,[11] Systems of nonlinear parabolic equations for phase change problems. Adv Math. Sci. Appl., vol. 3, 1993/94, 89-117. | Zbl 0827.35015
- ,[12] Solutions to a Penrose-Fife model of phase field type. J. Math. Anal. Appl., vol. 185, 1994, 262-274. | MR 1283056 | Zbl 0819.35159
,[13] Weak solutions to a Penrose-Fife model for phase transitions. Adv Math. Sci. Appl., vol. 5, 1995, 117-138. | MR 1325962 | Zbl 0829.35148
,[14] Weak solutions to a Penrose-Fife model with Fourier law for the temperature. J. Math. Anal. Appl., vol. 219, 1998, 331-343. | MR 1606330 | Zbl 0919.35137
,[15] Thermodinamically consistent models of phase field type for the kinetics of phase-transitions. Physica D, vol. 43, 1990, 44-62. | MR 1060043 | Zbl 0709.76001
- ,[16] Global smooth solutions to a thermodynamically consistent model of phase field type in higher space dimensions. J. Math. Anal. Appl., vol. 176, 1993, 200-223. | MR 1222165 | Zbl 0804.35063
- ,[17] 28, Birkhäuser, Boston1996. | MR 1423808 | Zbl 0882.35004
, Models of phase transitions. Progress in Nonlinear Differential Equations, vol.[18] Global smooth solutions to a thermodynamically consistent model of phase field type. Diff. Integral Eqns., vol. 5, 1992, 241-253. | Zbl 0768.35050
,